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Abstract—In this paper, we present a closed form formulation
for the output signals of one-to-N multimode interference coupler
under symmetric excitation. We derive the output ports phases
and show that the output phase has a quadratic dependence on
the output port number. Using beam propagation simulations, we
compare the analytical phase profile with the simulation results for
different waveguiding structures. In the case of Si/SiO2 structures,
our formulation predicts the output phase profile with errors not
more than about 1◦. Finally, we show that nonideal effects, such as
limited number of guided modes, modal phase errors, and exten-
sion of the field profile into the cladding layers have minimal effects
on the phase profile in comparison with the output amplitudes.
These results can be used in variety of optoelectronic applications,
where the knowledge of the phase profile is crucial, such as optical
phased arrays.

Index Terms—Multimode interference (MMI) coupler, optical
phased arrays, silicon photonics, waveguide theory.

I. INTRODUCTION

MULTIMODE interference (MMI) based devices have
been widely used in photonic integrated circuits (PICs)

as compact-size passive power splitters [1], [2], 90◦ hybrid cou-
plers [3], and mode-matching stages [4]. MMI-based active de-
vices such as optical switches [5], [6] and phased-array multi-
plexers [7] have been theoretically studied and experimentally
demonstrated. The interest in MMI-based devices stems from
properties, such as compact size, low power imbalance, stable
power splitting ratio, low cross talk, large optical bandwidth, and
high tolerance to fabrication process errors [2], [8], which ren-
der such devices suitable for integration in PICs with complex
passive networks including power splitters and signal routing.
Compared to Y-branches, MMI splitters are smaller and benefit
from scalability as the number of the output ports grow large.

Several studies investigated the quality of the output signals
in MMI couplers based on power uniformity [3], [9] and image
resolution [10]. Also, several techniques have been proposed to
improve the signal quality, such as tapered multimode waveg-
uide [11], graded-index waveguides [12], and deeply etched air
trenches at the boundary of the multimode section [2].
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In addition to being used as power splitters, MMI couplers can
be also used in more complex photonic components, where the
phase of the output signal is also important, such as 90◦ hybrid
couplers [3] and in high-speed phased-array optical beam steer-
ers [13]. Despite the effort in investigating the power profile at
the MMI output ports, the studies of phase profile are much more
limited. Bachmann et al. [14] presented general phase relations
derived for N × N MMI couplers, based on the assumption of
the superposition of self-images of equal amplitudes.

In general, the knowledge of the MMI output phase profile
is essential, when the phase differences between the signals of
different output arms determine the performance of the com-
pact optoelectronic devices that employ a multimode waveg-
uide region to generate several channels, such as optical spatial
quantized analog-to-digital converters [15], optical beam steer-
ers [13], and phased-arrayed photonic switches [16]. For ex-
ample, generalizing a two-channel optical switch based on the
phased-array optical beam steering [13] to more than two chan-
nel systems is not possible without necessary compensation of
the MMI output phase profile.

Symmetrically excited 1 × N MMI couplers are the most
commonly used power splitters in photonic circuitries, where
the number of output ports has been reported from 2 to as large
as 64 [17]. In this paper, starting from the field profile at the
MMI coupler input, we derive the complex field profile at N -
fold imaging length for symmetrically excited 1 × N MMIs,
without the assumptions of N -fold image superposition at the
output. The equal power distribution in the ideal case assumed
here, where the phase errors at imaging lengths are neglected,
is a result of our derivations. Analytical expressions for the out-
put phases are presented based on the derived complex output
field profile. Our results confirm the general phase relations
predicted in [14] for the case of symmetrically excited 1 × N
MMI couplers. We compare the results with the beam propa-
gation simulations and examine the source of the output phase
errors with respect to the analytical model. Our analysis is most
accurate for high-index contrast waveguides. However, image
enhancing techniques, such as etched air trenches introduced to
define the edges of the MMI coupler [2], make the presented
analysis applicable to low-index contrast waveguides, such as
polymer-based structures. Finally, we discuss the effect of this
technique on the output phase profile, which determine the con-
trollability of the output phased array.

II. MMI COUPLERS

Self-imaging is a phenomenon in multimode waveguides by
which an input field profile is reproduced in single or multiple
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Fig. 1. Schematics of 1 × N symmetric MMI coupler: (a) even N and
(b) odd N .

images at periodic intervals along the propagation direction of
the guide [3]. This effect has been exploited in different MMI-
based structures. Several MMI coupler structures have been
theoretically studied and experimentally demonstrated [1]–[3],
[9], [10], and [17]. In Fig. 1, the multimode waveguide section
consists of a W -wide core of refractive index nc , embedded in
between cladding layers of n0 . In the case of 3-D waveguides, an
equivalent 2-D representation can be made by techniques such
as the effective index method or the spectral index method [3].
The multimode section can support maximum M + 1 number
of modes. For each mode p, the dispersion relation is given as

β2
p + κ2

yp =
(

2πnc

λ0

)2

(1)

where βp is the propagation constant of the pth mode, λ0 is a
free-space wavelength, and κyp is the lateral wavenumber of
the pth mode, given as κyp = (p + 1)π/We , where We is the
effective width for mode m including the penetration depth due
to the Goose–Hahnchen shift [2]. The propagation constant βp

can be approximated as

βp � β0 −
p(p + 2)π

3Lπ
(2)

where Lπ = π/(β0 − β1) ≈ 4ncW
2
e /3λ0 [3]. Given the or-

thogonality of the propagating modes, any input field profile
at z = 0 can be written as a linear combination of the propagat-

ing modes

Φ(y, Z = 0) =
M∑

p=0

cpφp(y) (3)

where cp is the excitation coefficient of the pth mode by the
given input field profile calculated as the overlap integrals of the
pth mode and the input field profile [3]. Each excited mode accu-
mulates phase shifts according to its own propagation constant,
and therefore, the field profile at any z = L can be represented
by

exp(−jβ0L)
M∑

p=0

cpφp(y)exp(−j(βp − β0)L)

≈ exp(−jβ0L)
M∑

p=0

cpφp(y) exp

(
j
p(p + 2)π

3Lπ
L

)
. (4)

At L = 3rLπ with r = 1, 2, . . ., all the exponential terms in
(4) become in-phase with one another and a single image of
the input field profile is formed. Generally, an N -fold image of
the input field profile is formed at L = 3Lπ /N . In the case of
symmetric excitation, Φ(−y, Z = 0) = Φ(y, Z = 0), only the
even modes p = 2m, m ∈ Z are excited. We will use this fact
in Section III to simplify the field expression at the imaging
lengths. This type of excitation can be realized by a symmetric
input field profile fed to the center of the multimode waveguide
as demonstrated by Fig. 1. This has been known to result in short
1 × N couplers, where N is the number of output ports [3]. The
required length for such a coupler is given as L = 3rLπ /4N ,
which is four times shorter than the general case.

In the case of 1 × N couplers, the output power is ideally
designed to be equally divided among the output ports, and
therefore, the field amplitude at the output ports is 1/

√
N . In

reality, however, the approximation in (2) becomes inaccurate,
especially for the higher order modes in low-refractive-index
contrast waveguides. Therefore, the Goose–Hahnchen effect be-
comes mode dependent and the accumulated phase shift of each
mode is different from the ideal case by an error of

∆ψp ≈ λ2
0(p + 1)4π

2Nn2
c W

2
eff

[
1
8
− λ0n

2
c

6πWe(n2
c − n2

0)1.5

]
(5)

for the N -fold imaging length L = 3rLπ /N [9]. The existence
of these modal phase errors is inherent in the dispersion law of
the dielectric slab waveguides. Additional phase errors occur,
when the observation plane is shifted away from the paraxial
plane [10]. In the case of the symmetric excitation, the accumu-
lated phase error at the N -fold imaging length is ∆ψp/4. This
error would result in nonuniformity in the output power distri-
bution. In the next section, we derive a closed form formula for
the output field profile.

III. SYMMETRIC MMI COUPLER OUTPUT PHASE PROFILE

Consider the 1 × N MMI coupler shown in Fig. 1. In or-
der to analyze the output properties, such as image resolu-
tion, contrast, etc., Ulrich and Kamiya approximated the multi-
mode waveguide propagating modes field profiles with cosine
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functions

φp(y) = cos κypy (6)

which allowed them to apply the Fourier transform properties
to the field presentation in [10]. We adopt the same technique
to take the position (in the y-direction) of the images formed
into account. In general, nonspurious radiation modes as well
as other discrete modes should be considered to fully satisfy the
energy conservation law in the vicinity of discontinuity [18]. In
our analysis, we ignore such modes for simplicity.

Consider one of the N images of the input field at an N -
fold imaging length and shifted in the y-direction to y = yq .
Based on (3), this image can be presented as Bφ(y − yq , z =
0) = B

∑M
p=0 cpφp(y − yq ), where B = ejθq /

√
N , assuming

uniform power distribution. θq is the phase shift at ports that
correspond to q in Fig. 1 with respect to the input signal at
z = 0. Our goal is to derive an analytical expression for the
θq value. Note that the assumption of N -fold image formation
and uniform power distribution in the case of symmetric MMI
coupler intuitively bridge the derivations in the Appendixes A
and B to the analytical expressions of the total field profile at
L = 3rLπ /N . However, such assumptions are not crucial at this
point but are the results of the derivations. As shown in Fig. 1(a)
and (b) for the N images formed at the output ports the lat-
eral shifts of the position with respect to the input image are
yq = ±We/2N,±3We/2N, . . . ,±(N − 1)We/2N , for even
N , and yq = 0,±We/N,±2We/N,±(N − 1)We/2N , for odd
N . Therefore, at an N -fold imaging length (L0) the field profile
Φ(y, L0) is

1√
N

N/2−1∑
q=0

exp(jθq )
M∑

p=0

cp

{
cos

[
κy (p)

(
y− (2q+1)We

2N

)]

+ cos

[
κyp

(
y +

(2q + 1)We

2N

)]}
(7)

for even N , and

1√
N

exp(jθ0) +
1√
N

(N −1)/2∑
q=0

exp(jθq )

×
M∑

p=0

cp

{
cos

[
κy (p)

(
y − qWe

N

)]

+ cos

[
κyp

(
y +

qWe

N

)]}
(8)

for odd N . In (7) and (8), the symmetry of the structure have
been taken into account by letting θ−q = θq . We can sim-
plify (7) and (8), using the trigonometric identity cos(a ±
b) = cos(a) cos(b) ∓ sin(a) sin(b). We also noted that when
the multimode waveguide is symmetrically excited, only the
even modes of the multimode region are excited, and there-
fore, cp = 0, for odd p values. Using κy (p)y = κy (2m )y =

((2m + 1)/We)π, we can rewrite (7) and (8) with cp = c2m

2√
N

N/2−1∑
q=0

exp(jθq )

×
M/2∑
m=0

c2m cos(κy (2m )y) cos
[
(2m + 1)(2q + 1)

2N
π

]
(9)

for even N , and

1√
N

exp(jθ0) +
2√
N

(N −1)/2∑
q=0

exp(jθq )

×
M/2∑
m=0

c2m cos(κy (2m )y) cos
[
(2m + 1)q

N
π

]
(10)

for odd N . Note that M is even, and thus, M/2 is an integer. We
can also rewrite the field profile from (4) at a symmetric N -fold
imaging length, L0 = 3Lπ /4N , considering p = 2m

Φ(y, L0) =
M/2∑
m=0

c2m φ2m (y) exp
(

j
m(m + 1)π

N

)
. (11)

Note that we have dropped the common factor exp(−jβ0L0)
for simplicity, but we will add it back later. In the Appendix A,
we have proved that in the case of even N

M/2∑
m=0

c2m φ2m (y) exp
(

jm(m + 1)
N

π

)

=
2ej ((N −2)/4N )π

√
N

M/2∑
m=0

c2m φ2m (y)

×
(N/2)−1∑

q=0

exp
(
−j

q(q + 1)
N

π

)
cos

(
(2m + 1)(2q + 1)π

2N

)
.

(12)

Comparing (12) and (9), one can conclude that

exp(jθq ) = exp
(

j
N − 2
4N

π

)
× exp

(
−j

q(q + 1)
N

π

)
. (13)

Taking the common factor, exp(−jβ0L0), into account

θq = −β0L0 +
N − 2 − 4q(q + 1)

4N
π (14)

for q = 0, 1, . . . , N/2 − 1, where q is assigned to the output
ports as shown in Fig. 1(a). Note that the phase profile is sym-
metric with respect to the line y = 0. We can identify that the
phase profile has a propagation accumulated phase term, a con-
stant term depending on the number of output channels, which
is the same for all the channels, and a term that quadratically
depends on the channel number (starting from the middle of the
waveguide).
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In the case of odd N , one can show (see Appendix B)

M/2∑
m=0

c2m φtm (y) exp
(

j
m(m + 1)

N
π

)

=
ej ((N −1)/4N )π

√
N

M/2∑
m=0

c2m φ2m (y)

×


1 + 2

(N −1)/2∑
q=1

exp
(
−j

q2

N
π

)
cos

(
2m + 1

N
qπ

)
 .

(15)

Similarly, in the case of odd N , comparing (15) and (10), one
can conclude that

θq = −β0L0 +
N − 1 − 4q2

4N
π (16)

for q = 0, 1, . . . , (N − 1)/2, where the q values are assigned to
the output ports as shown in Fig. 1(b). Again, the phase profile
is symmetric with respect to the line y = 0. Equations (14) and
(16) confirm the general phase relations predicted in [14] for the
case of symmetrically excited 1 × N MMI couplers.

IV. SIMULATION RESULTS AND DISCUSSION

In order to investigate the MMI structure output phase, we per-
formed 3-D semivectorial beam propagation method (SVBPM)
simulations using the BeamPROP module in RSoft CAD. In
the beam propagation method, the field expression is separated
into a slow-varying envelop and a fast-varying phase term. It is
also assumed that the propagation is primarily along the prop-
agation direction (z-direction). Since boundary conditions of x
or y polarization can be incorporated into the finite-difference
equation, BPM can be semivectorial [19]. SVBPM simulators
can be implemented to reduce the computational expenses when
compared to full-field simulators, such as finite-difference time
domain. However, BPM simulations cannot handle beams prop-
agating at a large angle to the z-axis or backward reflections.
In the case of the MMI structures in this paper, we are nei-
ther concerned about the backward reflections nor wide angle
propagations, thus, we can use SVBPM to find the output phase
profile.

Fig. 2(a) shows the field propagation profile of a 1 × 6 Si/SiO2
MMI coupler. The refractive indexes of the core and the cladding
layers are nc = nSi = 3.47 and n0 = nSiO2 = 1.45, respec-
tively. A cross section diagram of the multimode waveguide
is shown in the inset of Fig. 2(c). The input and output ports
consist of waveguides with 2.5 µm × h cross sections, where
h = 0.25 µm is the thickness of the multimode waveguide [see
Fig. 2(c) inset]. In order to compare the BPM simulation results
with the analytical formula derived in the Section III, we take
one of the middle output ports (for even N ) [port number 3 in
Fig. 2(a)] to be the phase reference, for which the phase is set
to zero. Fig. 2(c) compares the output phase profile from the
BPM simulations with that calculated using (14).

Note that the high core/cladding layers refractive index con-
trast in the Si/SiO2 MMI coupler results in well-defined edges

Fig. 2. Beam propagation simulation results. (a) Field propagation profile at
x = 0, for the Si/SiO2 MMI with N = 6, W = 30 µm, L = 325 µm, and
h = 0.25 µm. (b) Field propagation profile at x = 0, for the ZPU12-RI MMI
with N = 6, W = 60 µm, L = 625 µm, and h = 5 µm. (c) Phase profile from
BPM simulation of the MMI structures in (a) and (b) and the ideal phase profile
form the analytical model with q values shown in (a). A cross section diagram
of the multimode waveguide is shown in the inset of (c).

along the length of the multimode waveguide. In order to ex-
amine the sources of the phase errors and to investigate the
validity of the analytical model for phase profile in the case of
low-refractive-index contrast, we simulated a polymer waveg-
uide structure composed of ZPU12-RI series polymer materials
from ChemOptics [2], where the core and the cladding layers
are ZPU12-460 (nc = 1.46) and (ZPU12-450) (n0 = 1.45), re-
spectively. For this MMI structure, input and output waveguides
of 5 µm × h cross section and h = 5 µm are assumed. This
MMI structure is adopted from [2] with no air trench along the
multimode waveguide. Fig. 2(b) shows the field propagation
profile of the ZPU12-RI MMI coupler and Fig. 2(c) compares
the simulated output phase profile with the analytical calcula-
tions derived in Section III.

Table I compares the BPM simulation results with the an-
alytical calculations for several Si/SiO2 and ZPU12-RI MMIs
with the number of output ports varying from N = 3 to 12. In
the case of Si/SiO2 MMIs, the MMI width W = N × 5 µm
and the MMI height h = 0.25 µm. In the case of the ZPU12-RI
MMIs, W = N × 10 µm and h = 5 µm. In all cases, the MMI
length is L = 3Lπ /4N , and the input waveguide is excited by
a TE-polarized mode. λ0 = 1600 nm and ∆x = ∆y = ∆z =
λ0/20ncore . The output ports that correspond to q = 0 are taken
as the reference, for which the phase is zero (θ0 = 0). According
to Fig. 1, for the middle output port in the case of odd N values
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TABLE I
CLOSED-FORM ANALYTICAL FORMULATION RESULTS VERSUS BPM SIMULATIONS

and for the two equivalent output ports in the middle in the case
of even N values q is 0.

In the case of the Si/SiO2 MMIs, the output phase values
are within about 1◦ of the calculated values from the analytical
models in (14) and (16). In the case of the ZPU12-RI MMIs, the
average phase profile error with respect to the analytical models
is about 5◦. This error can be attributed to modal phase errors
expressed in (5), and also the deviation of the modal field profiles
[φp(y)] from the cosine-shape functions as the penetration of
the evanescent field into the cladding layers is more in lower
refractive index contrast waveguides. The modal phase errors
are the main cause of nonuniformity in the output amplitudes
[9], [10]. Table I indicates that the output phase deviates more
from the ideal self-imaging guide analytical model as the output
port is shifted away from the paraxial plane (y = 0). Therefore,
the main source of errors in the phase profile is the deviation
of the modal field profiles from the cosine-shape functions. In
fact, for large N , the output phase values for the ports in the
middle of the MMI structure are almost the same as those in the
Si/SiO2 MMIs and ZPU12-RI MMIs.

Wang and Chen showed that etching deep air trenches along
the multimode waveguide to define the edges of the MMI cou-
pler substantially reduced the lateral penetration depth into
the cladding in the case of low-contrast refractive index struc-
tures [2]. Therefore, the effective width of all the guided modes
is approximately the same as the actual width of the MMI cou-
pler. Hence, the presence of air trenches improves image quality.
In order to investigate the effect of the such air trenches on the
output phase profile, we simulated the same ZPU12-RI MMI

Fig. 3. The average output phase profile error of the Si/SiO2 MMIs, ZPU12-RI
MMIs without air trenches and ZPU12-RI MMIs with air trenches with respect
to the analytical model.

structures but with air trenches along the multimode waveguide
sides. The resulted output phase values are presented in Table I.
Introducing the air trenches specially improves the modal field
profiles away from the paraxial plane, and therefore, correction
in the output phase values is more significant in the outer ports
(large q) compared to that of the ports in the middle (small q)
of the MMI structure.

Fig. 3 illustrates the average output phase error of the Si/SiO2
MMIs, ZPU12-RI MMIs without air trenches and ZPU12-RI
MMIs with air trenches with respect to the analytical model
as the number of outputs changes from N = 3 to 12. In the
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case of the PU12-RI MMIs with air trenches, the output phase
of the middle ports are close to the ideal values at large N
values, similar to that of the PU12-RI MMIs with air trenches.
Therefore, the correction of the output phase of the outer ports
by introducing the air trench, results in a smaller average output
phase profile error as the N increases.

V. CONCLUSION

We derive analytical formulations for the output phase profile
of symmetrically excited one-to-N MMI couplers. The out-
put phase increases quadratically from the middle of the MMI
waveguide, which needs to be taken into account for phase-
dependent applications, such as optical phased arrays. We com-
pare the analytical calculations with the results of beam propa-
gation simulations for different MMI structures and find that the
effect of the penetration of the field into the cladding layers at
the side walls is more than the modal phase errors on the output
phase profile. However, even in the case of low-refractive-index
contrast of ∆n = 0.01, the output phase values are within the
10◦ intervals from the predicted values.

APPENDIX A

PROOF FOR EVEN N

In the case of N = 2K, K ∈ Z, we need to show

2ej ((N −2)/4N )π
√

N

M/2∑
m=0

C2m φ2m (y)

×
(N /2)−1∑

q=0

exp
(
−j

q(q+1)
N

π

)
cos

(
(2m + 1)(2q+1)π

2N

)

=
M/2∑
m=0

C2m φ2m (y) exp
(

jm(m + 1)
N

π

)
. (17)

Note that y in (17) is an independent variable. Therefore,
in order to prove (17), we need to show that for every m, the
coefficients of C2m φtm (y) on the left and right sides of (17) are
equal. Thus, we need to prove

2ej ((2K−2)/8K )π
√

2K

K−1∑
q=0

exp
(
−jq(q + 1)

2K
π

)

× cos
(

(2m+1)(2q+1)π
4K

)
= exp

(
jm(m+1)

2K
π

)
(18)

which simplifies to

2ej ((N −2)/4N )π
√

2K

K−1∑
q=0

exp
(
−j

q(q + 1) + m(m + 1)
2K

π

)

× cos
(

(2m + 1)(2q + 1)π
4K

)
= 1. (19)

Let us simplify the left side of (19)

ej ((K−1)/4K )π
√

2K

×
{

K−1∑
q=0

exp
(
−j

2q(q+1)+2m(m+1) − (2m+1)(2q+1)
4K

π

)

+ exp
(
−j

2q(q+1)+2m(m+1)+(2m + 1)(2q + 1)
4K

π

) }

(20)

which further simplifies to

ej (1/4)π
√

2K

K−1∑
q=0

exp
(
−j

(m−q)2

2K
π

)
+ exp

(
−j

(m+q+1)2

2K
π

)
.

(21)
Now, note that

K−1∑
q=0

exp
(
−j

(m − q)2

2K
π

)
+ exp

(
−j

(m + q + 1)2

2K
π

)

=
m+K∑

q=m+1−K

exp
(
−j

q2

2K
π

)
. (22)

Consider a set of integer numbers {m − K + 1, m −
K + 2, . . . , m + K}. Regardless of m, this set modules
2K is exactly the same as {0, 1, . . . , 2K − 1}mod(2K). It
can be easily shown that if a ≡ b mod(2K), then a2 ≡ b2

mod(4K), hence exp(−j2πa2/4K) = exp(−j2πb2/4K) or
exp(−jπa2/2K) = exp(−jπb2/2K). Therefore, the expres-
sion in (19) is independent from m as follows:

m+K∑
q=m+1−K

exp
(
−j

q2

2K
π

)
=

2K−1∑
q=0

exp
(
−j

q2

2K
π

)
. (23)

From the above-mentioned statements, we can also conclude

2K−1∑
q=0

exp
(
−j

q2

2K
π

)
=

2K∑
q=1

exp
(
−j

q2

2K
π

)

=
4K∑

q=2K +1

exp
(
−j

q2

2K
π

)
(24)

which leads to

m+K∑
q=m+1−K

exp
(
−j

q2

2K
π

)
=

1
2

4K∑
q=1

exp
(
−j

q2

2K
π

)
. (25)

Using the reciprocity law for quadratic Gauss, sums defined as

G(N ;M) =
M∑

q=1

exp(j2πNq2/M) (26)
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we can write the results as follows:

G(N = 1,M) =
M∑

q=1

exp(j2πq2/M)

=
1
2

√
M(1 + j)(1 + e−jπM/2) (27)

which is equal to (1 + j)
√

M if M ≡ 0 mod(4). Comparing
(25) and (27), we can conclude

m+K∑
q=m+1−K

exp
(
−j

q2

2K
π

)
=

1
2
G∗(1, 4K) =

1
2
(1 − j)

√
4K

= (1 − j)
√

K = exp
(
−j

π

4

)√
2K (28)

where G∗ is the complex conjugate of G. Considering (19), (22),
(23), and (28), we can write

2ej ((N −2)/4N )π
√

2K

K−1∑
q=0

exp
(
−j

q(q + 1) + m(m + 1)
2K

π

)

× cos
(

(2m+1)(2q+1)π
4K

)
=

ej (1/4)π
√

2K

2K−1∑
q=0

exp
(
−j

q2

2K
π

)

=
ej (1/4)π
√

2K
× exp

(
−j

π

4

)√
2K = 1. (29)

Therefore, we have proved (18) and consequently (17).

APPENDIX B

PROOF FOR ODD N

In the case of N = 2K + 1, K ∈ Z, we need to prove

ej ((N −1)/4N )π
√

N

M/2∑
m=0

C2m φ2m (y)

×


1 + 2

(N −1)/2∑
q=1

exp
(
−j

q2

N
π

)
cos

(
2m + 1

N
qπ

)


=
M/2∑
m=0

C2m φtm (y) exp
(

j
m(m + 1)

N
π

)
. (30)

Similar to the case of even N , since y in (17) is an independent
variable, in order to prove (30), we need to show that for every
m, the coefficients of C2m φtm (y) on the left and right sides of
(30) are equal. Thus, we need to prove

ej ((N −1)/4N )π
√

N


1+2

(N −1)/2∑
q=1

exp
(
−j

q2

N
π

)
cos

(
2m+1

N
qπ

)


= exp
(

j
m(m + 1)

N
π

)
(31)

or equivalently

ej ((2K )/4(2K +1))π
√

2K + 1

{
exp

(
−j

m(m + 1)
2K + 1

π

)

+ 2
K∑

q=1

exp
(
−j

q2+m(m+1)
2K+1

π

)
cos

(
2m+1
2K+1

qπ

)}
= 1.

(32)

Consider the left-hand side of (32)

ej ((K )/2(2K +1))π
√

2K + 1

{
exp

(
−j

m(m + 1)
2K + 1

π

)

+
K∑

q=1

exp
(
−j

q2 + m(m + 1) − (2m + 1)q
2K + 1

π

)

+ exp
(
−j

q2 + m(m + 1) + (2m + 1)q
2K + 1

π

) }
(33)

which simplifies to

ej ((K )/2(2K +1))π
√

2K + 1

{
exp

(
−j

m(m + 1)
2K + 1

π

)

+
K∑

q=1

exp
(
−j

(q − m − 1/2)2 − 1/4
2K + 1

π

)

+ exp
(
−j

(q + m + 1/2)2 − 1/4
2K + 1

π

)}
(34)

and further simplifies to

ej (π/4)
√

2K + 1

{
exp

(
−j

(m + 1/2)2

2K + 1
π

)

+
K∑

q=1

exp
(
−j

(q − m − 1/2)2

2K + 1
π

)

+ exp
(
−j

(q + m + 1/2)2

2K + 1
π

)}
. (35)

Note that

exp
(
−j

(m + 1/2)2

2K + 1
π

)
+

K∑
q=1

{
exp

(
−j

(q − m−1/2)2

2K+1
π

)

+ exp
(
−j

(q + m + 1/2)2

2K + 1
π

})

=
K∑

q=−K

exp
(
−j

(2q + 2m + 1)2

4(2K + 1)
π

)
. (36)

Consider q = n(2K + 1) + r, −K ≤ q ≤ K and 0 ≤ r ≤ 2K.
Then, {q + m}mod(2K + 1) ≡ {q}mod(2K + 1) with the
same set of residuals {r}, for every integer m. In addition,
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{2m + 2q + 1} mod(2K + 1) is the set of {2r + 1}. There-
fore, ∀m ∈ Z and ∀q ∈ {q}, ∃r ∈ {q} so that 2m + 2q + 1 =
2p(2K + 1) + (2r + 1) for some integer p. We can write

(2m + 2q + 1)2 = 4p(2K + 1)[p(2K + 1)

+ (2r + 1)] + (2r + 1)2 . (37)

Also note that p [p(2K + 1) + (2r + 1)] is always even. Thus,
(2m + 2q + 1)2 = 8s(2K + 1) + (2r + 1)2 , for some integer
s, and

K∑
q=−K

exp
(
−j

(2q + 2m + 1)2

4(2K + 1)
π

)

=
2K∑
r=0

exp
(
−j

(2r + 1)2

4(2K + 1)
π

)

= exp
−jπ

4(2K + 1)

2K∑
r=0

exp
r2 + r

2K + 1
π. (38)

Now consider the Gauss quadratic reciprocity law,
∀a, b, c, z ∈ Z, ac �= 0 and ac + b even

|c|−1∑
z=0

exp
(

jπ
az2 + bz

c

)

=
√
|c/a| exp

(
jπ

|ac|−b2

4ac

) |a |−1∑
z=0

exp
(

jπ
cz2+bz

a

)
. (39)

Let a, b = 1, z = r, and c = 2K + 1, we can see that ac +
b = 2K + 2 is even, therefore, we can use the Gauss quadratic
reciprocity law

exp
−jπ

4(2K + 1)

2K∑
r=0

exp
r2 + r

2K + 1
π

= exp
−jπ

4(2K + 1)
×
√

2K + 1 exp
(
−jπ

2K

4(2K + 1)

)

=
√

2K + 1 exp−j
π

4
. (40)

From (35) and (40)

ej (π/4)
√

2K + 1

{
exp

(
−j

(m + 1/2)2

2K + 1
π

)

+
K∑

q=1

exp
(
−j

(q − m − 1/2)2

2K + 1
π

)

+ exp
(
−j

(q + m + 1/2)2

2K + 1
π

) }

=
ej (π/4)

√
2K + 1

×
√

2K + 1 exp
(
−j

π

4

)
= 1. (41)

Therefore, we have proved (31) and consequently (30).
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