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ABSTRACT   

We derive analytical formulations for the output phase profile of symmetrically excited one-to-N multimode interference 
couplers. We show that the output phase increases quadratically from the middle of the MMI waveguide, which needs to 
be taken into account for phase-dependent applications such as optical phased arrays.  
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1. INTRODUCTION  
Multimode interference (MMI) based devices have been widely used in photonic integrated circuits 

(PICs) as compact size passive components power splitters [1], [2], 90◦ hybrid couplers [3] and 

mode-matching stages [4]. MMI-based active devices such as optical switches [5], [6] and phased 

array multiplexers [7] have been theoretically studied and experimentally demonstrated. The interest 

in MMI based devices stems from properties such as compact size, low power imbalance, stable 

power splitting ratio, low cross talk, large optical bandwidth, and high tolerance to fabrication 

process [2], [8], which render such devices suitable for integration in PICs with complex passive 

networks including power splitters and signal routing. Compared to Y-branches, MMI splitters are 

smaller and benefit from scalability as the number of the output ports grows. 

Several studies investigated the quality of the output signals in MMI couplers based on power 

uniformity [3], [9] and image resolution [10]. Also, several techniques have been proposed to 

improve the signal quality, such as tapered multimode waveguide [11], graded-index waveguide [12] 

and deeply etched air trenches at the boundary of the multimode section [2]. In addition to power 

splitter, MMI coupler can be used in more complex photonic components where the phase of the 

output signal is also important, such as 90◦ hybrid couplers [3]. 

In addition to power splitter, MMI coupler can be used in more complex photonic components 

where the phase of the output signal is also important, such as 90◦ hybrid couplers [3]and in high-

speed phased array optical beam steering [13]. Despite the effort in investigating the power profile at 

the MMI output ports, there have been no studies on the output phase profile. In many applications, 
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the knowledge of the phase pro file is important. The phase differences of MMI output ports can 

severely distort the performance of compact optoelectronic devices that employ a multimode 

waveguide region to generate several channels with linear phase profiles such as optical spatial 

quantized analog-to-digital converters [14] and GHz Optical beam steerers [15]. The knowledge of 

the MMI output phase profile will provide a means to apply appropriate phase shifts in order to 

attain the desired phase profile. 

 

 
Symmetrically excited one-to-N MMI couplers are the most common power splitters in photonic 

circuitries, where the number of output ports has been reported from 2 to as large as 64 [16]. In this 

paper, we derive an analytical formula for the symmetrically excited MMI output phase profile, and 

 
Fig. 1, Schematics of 1 × N symmetric MMI coupler, (a) even N, (b) odd N. 
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compare the results with beam propagation simulations. Additionally, we report a complete 

description of the output field profile at the symmetric N-fold imaging length in ideal MMI couplers. 

Our analysis is most accurate for high index contrast waveguides. However, image enhancing 

techniques, such as etched air trenches introduced to define the edges of the MMI coupler [2], make 

the presented analysis applicable to low index contrast waveguides, such as polymer based 

structures. Such etched air trenches reduce the lateral penetration depth into the cladding so that the 

effective width of all the guided modes is approximately the same as the actual width of the MMI 

coupler, and therefore improve the output power uniformity.  

2. MULTIMODE INTERFERENCE COUPLERS 
Self-imaging is a phenomenon in multimode waveguides by which an input field profile is 

reproduced in single or multiple images at periodic intervals along the propagation direction of the 

guide [3]. This effect has been exploited in different MMI based structures. Several MMI coupler 

structures have been theoretically studied and experimentally fabricated [1]–[3], [9], [10], [16]. In 

Fig. 1 the multimode waveguide section consists of a W -wide core of refractive index nc, embedded 

in between cladding layers of n0. In the case of 3D waveguides, an equivalent 2D representation can 

be made by techniques such as the effective index method or the spectral index method [3]. The 

multimode section can support maximum M + 1 number of modes. For each mode p, the dispersion 

relation is given as 
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where, βp is the propagation constant of the the pth mode, λ0 is a free-space wavelength. κyp is the 

lateral wavenumber of the pth mode, given as κyp = (p+1)π/We, where We is the effective width for 

mode m including the penetration depth due to the Goose-Hahnchen shift [2]. The propagation 

constant βp can be approximated as 
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where, Lπ=π/(β0-β1)≈4ncWe
2/3λ0. Given the orthogonality of the propagating modes, any input field 

profile at z = 0, can be written as a linear combination of the propagating modes, 
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where cp is the excitation coefficient of the pth mode by the given input field profile, calculated as 

the overlap integrals of the pth mode and the input field profile [3]. Each excited mode accumulates 

phase shift according to its propagation constants and therefore, the field profile at any z = L can be 

represented by 
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At L =3rLπ with r =1, 2, ..., all the exponential terms in (4) becomes in-phase with one another and a 

single image of the input field profile is formed. Generally, an N-fold image of the input field profile 

is formed At L =3Lπ/N. In the case of symmetric excitation, Φ(y,Z =0) =Φ(y,Z =0), only the even 

modes p =2m, for integer m, are excited. This type of excitation can be realized by a symmetric 

input filed profile fed to the center of the multimode waveguide Fig. 1. This has been known to 

result in short 1xN couplers, where N is the number of output ports [3]. The required length for such 

a coupler is given as which is four times shorter than the general case. L =3rLπ/4N, r integer. 

In the case of 1xN couplers, the output power is ideally designed to be equally divided among the 

output ports and therefore, the field amplitude at the output ports is 1/√N. In reality, however, the 

approximation in (2) becomes inaccurate especially for the higher order modes in low refractive 

index contrast waveguides. In these cases, the Goose-Hahnchen effect becomes mode dependent and 

the accumulated phase shift of each mode is different from the ideal case by an error of 
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for the N-fold imaging length L =3rLπ/N [9]. The existence of these modal phase errors is inherent 

in the dispersion law of the dielectric slab waveguides. Additional phase errors happen when the 

observation plane is shifted away from the paraxial plane [10]. In the case of the symmetric 

excitation, the accumulated phase error at the N-fold imaging length is Δψp/4. This error would 

result in non-uniformity in the output power distribution. The phase profile of the output ports and 

the effect of non-ideal effects on the output phase profile have not been investigated. In the next 
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section we derive a closed form formula for the output field profile. 

 

3. SYMMETRIC MMI COUPLER PHASE PROFILE 

 

Consider the 1xN MMI coupler shown in Fig. 1. In order to analyze the output properties, such as 

image resolution, contrast, etc, Ulrich and Kamiya approximated the multimode waveguide 

propagating modes field profiles with cosine functions, 

),cos()( yy ypp κφ =               (16) 

which allowed them to apply the Fourier transform properties to the field presentation in [10]. In this 

paper we adopt the same technique to take the position (in the y-direction) of the images formed into 

account.  

Consider one of the N images of the input field at an N-fold imaging length and shifted in the y-

direction to y = yq. Based on (3), this image can be presented as BΦ(y-yq, z =0) 
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As shown in Figs. 1(a) and (b) for the N images formed at the output ports the lateral shifts of the 

position with respect to the input image are yq =±We/2N, ±3We/2N..., ± (N-1)We/2N for even N, 

and yq =0, ±We/N, ±2We/N, ±(N-1)We/2N for odd N. Therefore, at an N-fold imaging length (L0) 

the field profile Φ(y,L0) is 
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for even N, and 
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for odd N. In (7) and (8), the symmetry of the structure have been taken into account by letting θ-q = 

θq. We can simplify (7) and (8) using the trigonometric identity cos(a+b)= cos(a)cos(b)-sin(a)sin(b). 

We also note that when the multimode waveguide is symmetrically excited, only the even modes of 
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the multimode region are excited, and therefore cp =0 for odd p values. We can rewrite (7) and (8) 

with cp = c2m 
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for even N, and 
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for odd N. We can also rewrite the field profile from (4) at a symmetric N-fold imaging length, L0 

=3Lπ/4N, considering p =2m 
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Note that we have dropped the common factor exp(-jβ0L0), for simplicity, but we will add it back 

later. Using the reciprocity law for quadratic Gauss sums we can show that in the case of even N  
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Comparing (12) and (9), one can conclude that 
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 Taking in the common factor, exp(-jβ0L0), into account, 
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for q = 0, 1..., N/2-1, where q is assigned to the output ports as shown in Fig. 1(a). Note that the 
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phase profile is symmetric with respect to the line y = 0.We can identify that the phase profile has a 

propagation accumulated phase term, a constant term depending on the number of output channels, 

which is the same for all the channels, and a term that quadratically depends on the channel number 

(starting from the middle of the waveguide). In the case of odd N, one can show  
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Similarly, in the case of odd N, comparing (15) and (10) one can conclude that 
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for q = 0, 1, ...(N - 1)/2, where the q values are assigned to the output ports as shown in Fig. 1(b). 
Again, the phase profile is symmetric with respect to the line y = 0. Although the discussion in this 
paper is based on dielectric waveguides, similar results are expected in the case of self-imaging in 
other waveguiding structures, such as multimode photonic crystal waveguides, which can be realized 
by removing several periods in the transverse direction [17]. 

 

Appendix I: Proof for even N 
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Note that y in (17) is an independent variable. Therefore, in order to prove (17), we need to show 

that for every m, the coefficients of )(2 yC mmϕ  on the left and right sides of (17) are equal. Thus, we 

need to prove 
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which simplifies to 
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Let us simplify the left hand side of (19): 
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Consider a set of integer numbers {m-K+1, m-K+2…,m+K}. Regardless of m, this set imodules 2K is exactly the same 

as {0, 1…,2K-1}mod(2K). it can be easily shown that if ba ≡ mod(2K), then 22 ba ≡ mod(4K),  hence 
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From the abovementioned statements we can also conclude 
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which leads to 
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Using the reciprocity law for quadratic Gauss sums defined as 

∑
=

=
M

q
MNqjMNG

1

2 ),/2exp();( π             (26) 

we can write the results as follows 

∑
=

−++===
M

q
MjjMMqjMNG

1

2 )],2/exp(1)[1(
2
1)/2exp();1( ππ        (27) 

which is equal to Mj)1( + if 0≡M mod(4). Comparing (25) and (27) we can conclude that 

,2)
4

exp()1(4)1(
2
1

)4,1(*
2
1

2
exp

1

2

KjKjKj

KG
K

qj
Km

Kmq

π

π

−=−=−

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

+

−+=           (28) 

where, G* is the complex conjugate of G. Consider (19), (22), (23) and (28), we can write 
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Therefore, we have proved (18) and consequently (17). 

 

Appendix II: Proof for odd N 
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Similar to the case of even N, since y in (17) is an independent variable, in order to prove (29), we 

need to show that for every m, the coefficients of )(2 yC mmϕ on the left and right sides of (29) are 

equal. Thus, we need to prove 
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or equivalently, 

,1}
12
)12(cos

12
)1(exp2

12
)1({exp

12

)
)12(4

2exp(

1

2

=⎟
⎠
⎞

⎜
⎝
⎛

+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
++

−

+⎥⎦
⎤

⎢⎣
⎡

+
+

−
+
+

∑
=

K

q K
qm

K
mmqj

K
mmj

K
K
Kj

ππ

π
π

         (31) 

Consider the left-side of (31) 
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which simplifies to  
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and further simplies to  
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Note that  
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Consier rKnq ++= )12( , KqK ≤≤−  and Kr 20 ≤≤ . Then, 
)12mod(}{)12mod(}{ +≡++ KqKmq  with the same set of residuals {r}, for every integer m. In 

addition, )12mod(}122{ +++ Kmq is the set of {2r+1}. Therefore, Zm /∈∀  and }{qq∈∀ , 
}{qr ∈∃ so that 2m+2q+1=2p(2K+1)+(2r+1) for some integer p. Thus, we can write 
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Now consider the Gauss Quadratic Reciprocity law Zzcba /∈∀ ,,, , 0≠ac  and even bac +  
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Let 1, =ba , rz =  and 12 += Kc , we can say 22 +=+ Kbac is always even, therefore, we can use 
the Gauss Quadratic Reciprocity law as follows 
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From (34) and (39) we conclude  
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Therefore, we have proved (30) and consequently (29). 
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