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We analytically study roughness-induced scattering loss in a photonic crystal waveguide �PCW�. A cross-
sectional eigenmode orthogonality relation is derived for a one-dimensional �1D�-periodic system, which
allows us to significantly simplify the coupled mode theory in the fixed eigenmode basis. Assisted by this
simplification, analytic loss formulas can be obtained with reasonable assumptions despite the complexity of
PCW mode fields. We introduce the radiation and backscattering loss factors �1 and �2 such that the loss
coefficient � can be written as �=�1ng+�2ng

2 �ng is the group index�. By finding analytic formulas for �1 and
�2, and examining their ratio, we show why the backscattering loss generally dominates the radiation loss for
ng�10. The interplay between certain mode-field characteristics, such as the spatial phase, and structure
roughness is found crucial in the loss-generation process. The loss contribution from each row of holes is
analyzed. The theoretical loss results agree well with experiments. Combined with systematic simulations of
loss dependences on key structure parameters, the insight gained in this analytic study helps identify promising
pathways to reducing the slow light loss. The cross-sectional eigenmode orthogonality may be applicable to
other 1D-periodic systems such as electrons in a polymer chain or a nanowire.

DOI: 10.1103/PhysRevB.82.235306 PACS number�s�: 42.70.Qs, 42.25.Fx, 42.79.Gn, 42.82.Et

I. INTRODUCTION

Photonic crystal waveguides �PCWs� can slow down light
significantly, which has important applications such as opti-
cal switching and modulation1–3 and all optical storage.4

However, significant optical loss in the slow light regime
stymies further advance in this field. Roughness-induced loss
has been previously investigated.5–15 The scattering from a
single sidewall irregularity was theoretically studied at first.6

Random sidewall roughness with spatial correlation was later
introduced to account for loss characteristics in real photonic
crystal waveguide structures.9,10 Although the scaling of
slow light loss with respect to the group velocity, vg, has
been examined,5,8–16 it has been difficult to reach a conclu-
sive answer. Theory predicted 1 /vg scaling for the radiation
loss and 1 /vg

2 scaling for the backscattering loss8,9 in the
absence of multiple scattering. Experimental studies, how-
ever, often fitted the loss data with a simple power law vg

−�,
where � was found to vary widely.10,11,17 To explain these
variations, theory should provide a global picture of how the
backscattering and radiation losses �and their relative
strength� vary with a wide range of structure and roughness
parameters commonly found in experiments. More impor-
tantly, theory should provide pertinent insight into the loss-
generation process and suggest promising pathways to loss
reduction.

In this work, we develop a theoretical framework for cal-
culating PCW scattering loss based on the coupled mode
theory in the fixed eigenmode basis. Here we will prove an
interesting cross-sectional eigenmode orthogonality relation,
which allows us to significantly simplify the coupled mode
theory in the fixed eigenmode basis. Assisted by this simpli-
fication, analytic loss formulas can be obtained with reason-
able assumptions despite the complexity of PCW mode
fields. We will introduce the radiation and backscattering loss
factors �1 and �2, such that the loss coefficient � can be
expressed as �=�1ng+�2ng

2, where ng is the group index. By

finding analytic formulas for �1 and �2, and examining their
ratio, we show why the backscattering loss dominates the
radiation loss under fairly general conditions. The analytic
study provides further insight into the underpinning physics,
such as how the mode-field characteristics �e.g., spatial
phase� interact with roughness to produce loss. The depen-
dences of loss on the structure/roughness parameters are
simulated to corroborate the analytic results. Unlike numeri-
cal studies that are limited to several instances of structures
with specific structure/roughness parameters, this analytic
study reveals general loss characteristics and fresh insight
into the loss-generation process, helping identify new path-
ways to loss reduction.

This paper is organized as follows. In Sec. II, we will
present our scattering loss theory. An interesting eigenmode
orthogonality relation will be derived and will be utilized to
simplify the coupled mode theory in the fixed eigenmode
basis. The backscattering and radiation losses will be calcu-
lated for the air-bridge type of photonic crystal waveguides,
and the loss contribution from each row of holes will be
analyzed. In Sec. III, we will present analytic formulas of the
backscattering and radiation loss factors and give a general
proof of the dominance of the backscattering loss for ng
�10. The interplay between the mode-field characteristics
�e.g., spatial phase� and the roughness will be analyzed. In
Sec. IV, we will systematically study the loss dependences
on the structure and roughness parameters such as the hole
diameter, the waveguide width, and the correlation length.
Strategies of reducing the roughness-induced loss will be
discussed. The theoretical results are found to agree well
with experiments. Section V presents our conclusions.

II. SCATTERING LOSS THEORY

A. Coupled mode theory and mode orthogonality in
a PCW crossection

The coupled mode theory of a photonic crystal waveguide
can be written concisely with Dirac notation. This particular
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form of coupled mode theory was first developed by Johnson
et al.18 for taper transitions in photonic crystals, and was
later applied to the disorder-induced scattering problem.12

The theory can use the fixed eigenmode basis or the instan-
taneous eigenmode basis. It has the advantage of giving clear
dependence of mode coupling on the group velocity through
the mode normalization factor. In this theory, the Maxwell’s
equations are rewritten as18

Â��� = − i
�

�z
B̂��� , �1a�

Â = ��� − �−1�t � �−1�t� 0

0 �� − �−1�t � �−1�t�
� ,

�1b�

B̂ = � 0 − ẑ�

ẑ� 0
�, ��� = �Et�x�

Ht�x� �, Et 	 �Ex

Ey
� ,

�1c�

Ht 	 �Hx

Hy
� ,

where ��X� is the dielectric function, � the permeability. The
eigenmodes, ��	�=ei	z�	�, satisfy

Ĉ�	� 	 �Â + i
�

�z
B̂��	� = 	B̂�	� . �2�

Here we consider guided and radiation modes with real 	.
The inner product is defined as


��B̂���� = ẑ ·� Et
� � Ht� + Et� � Ht

��dxdy . �3�

A rigorous formulation of the coupled mode theory must be
established upon a complete set of orthogonal modes.18,19

For an ordinary waveguide, whose structure is invariant
along z, it is straightforward to show that any two eigen-
modes at a given frequency � must be orthogonal19


	�B̂�	�� = 
	�		�. �4�

For a PCW periodic along z, solid-state theory suggests that
the eigenstate orthogonality can be obtained only by further
integration along z,

� ei�	�−	�z
	�B̂�	��dz = 
	�		�. �5�

Such an orthogonality relation cannot be directly used in a
rigorous PCW coupled mode theory because the modal cou-
pling coefficients also have z dependence and will appear in
the above integral. To overcome this problem, a complicated
virtual coordinate theory was previously developed.18

Here we show that Eq. �4� still holds for a PCW in any z
section. By partial integration, one can readily show


	�Ĉ�	��= �
	��Ĉ�	���+ i �
�z 
	�B̂�	��. Therefore,

�	� − 	�
	�B̂�	�� = i
�

�z

	�B̂�	�� . �6�

This is a differential equation of 
	�B̂�	��z with a solution


	�B̂�	��z=e−i�	�−	�z
	�B̂�	��z=0. However, 
	�B̂�	��z+a

= 
	�B̂�	��z according to Bloch theorem. Therefore,


	�B̂�	��=
	�	,	�−�2n�/a�, which gives Eq. �4� for 	 and 	� in
the first Brillouin zone.

The orthogonality Eq. �4� for a photonic crystal wave-
guide is an interesting result. According to the Bloch theo-
rem, the eigenstate orthogonality in a generic one-
dimensional �1D�-periodic system should be obtained by
integrating ��b

��adz=0 along the periodicity direction �z in
this case�. However, the above proof has shown that if there
are multiple eigenstates with different on-axis wave vectors
at a given frequency �or photon energy�, they must be or-
thogonal by integrating ��b

��adxdy in any cross section per-
pendicular to the periodicity axis. Note an equivalent form of
this orthogonality was proved in a different theoretical
framework based on the Lorentz reciprocity,20 which is lim-
ited to electromagnetic wave. The proof given here is gener-
ally valid for any scalar or vector wave satisfying Eq. �2�.
Therefore, the orthogonality relation presented here may be
potentially applicable to other 1D-periodic systems, such as
electrons in a polymer chain or a nanowire.

The coupled mode theory in the fixed eigenmode basis
can now be established easily based on Eq. �4� for a photonic

crystal waveguide. With a potential perturbation Â, the
mode equation becomes

�Â + Â���� = − i
�

�z
B̂��� , �7�

where ���=ncn�z�ei	nz�n�, and �n� are the eigenmodes of the
unperturbed system. The coupled mode theory generally re-
quires to use 
m� to select cm for a particular mode from Eq.
�7�. If the conventional orthogonality relation, Eq. �5�, is

applied, the evaluation of �
m� �
�z B̂���dz will be problematic

because cm�z� depends on z. With the orthogonality relation,
Eq. �4�, however, it is straightforward to show that the cou-
pling coefficients are governed by the following equation:

�cm

�z
= �i/
m�

n

ei�	n−	m�z
m�Â�n�cn. �8�

We should emphasize that although it appears similar to the
equation for a conventional waveguide homogenous along z,
this simplified Eq. �8� can be rigorously established for a
PCW only with the help of Eq. �4�. This simplification en-
abled by the cross-sectional orthogonality relation, Eq. �4�, is
the main improvement for the coupled mode theory used in
this work. This simplification allows us to derive analytic
loss formulas that can be calculated almost by hand, as we
shall see in Sec. III, and provides a clearer physical picture.

SONG, INTEGLIA, AND JIANG PHYSICAL REVIEW B 82, 235306 �2010�

235306-2



B. Separate calculation of backscattering loss
and radiation loss

The scattering loss can be introduced through a random

potential Â due to dielectric perturbation � and ��−1�.
For a frequency range with a single guided mode �	�, the
perturbed mode is given by

��� = c	�z�ei	z�	� + c−	�z�e−i	z�− 	� + 
k

ck�z�eikzz�k� .

�9�

where �k� are radiation modes, and cm�z�, m= �	, k are the
coupling amplitudes. With Eq. �4�, it is straightforward to
solve the coupled mode equations to the first order. For unity
input, the output amplitudes are given by

cm = �i/
m�� � � ei�	−	m�z�Â�m	dxdydz ,

where �Â�m		�m
� Â�	, �m= 
x �m�. The loss coefficient is

given by the conservation of power flux19

� = �1/Lz��
�c−	�2� + 
k


�ck�2��
k/
	�� , �10�

where the ensemble average 
 · � over the random roughness
has been applied. To show explicit dependence on the group
velocity vg,	 of mode 	, we introduce U		 1

4 �
	 /vg,	�, the
time averaged mode energy per unit length along the z axis.
For a radiation mode �k�, we define Uk	 1

4 �
k /vgz,k�, where
vgz,k is the z component of vg,k. Then the 
m terms in Eq. �10�
can be replaced by Um and vg. Assuming that the sidewall
roughness of different holes is uncorrelated,9 the ensemble
averaged � of a PCW is a sum of the ensemble averaged loss
contribution from each hole. For roughness-related calcula-
tion, it is more convenient to use the polar coordinates �r ,��
in each hole in place of �x ,z�. After some calculations, we
find

� = �1ng + �2ng
2, �11a�

�1 = �1/a�
k


nx

I�k,	,nx��c/vgz,k��Uk/U	� , �11b�

�2 = �1/a�
nx

I�− 	,	,nx� , �11c�

where nx and nz are the indices of holes along x and z, re-
spectively �see Fig. 1�. The PCW has a lattice constant a,
mean hole radius r0, and slab thickness tslab. The integral for
the nxth hole is

I�m,	,nx� 	 �r0tslab/4Umc�2

���nx
ei�	−	m�r0�sin �−sin ���Âm	,nx

� ����Âm	,nx
���

�
r����r����d��d� , �12�

where Âm	,nx
���= �1 / tslab��Âm	 �r=r0

+dy. A typical autocor-

relation function is given by 
r����r����=�2e−��−���r0/lc,
where � and lc are the rms roughness and correlation length,

respectively. Note that the coordinates �r ,�� are centered in
each cell �nx

.
Now the loss coefficients can be numerically calculated

using Eqs. �11� and �12�. Instead of directly calculating the
loss coefficient �, we will calculate the radiation and back-
scattering loss factors �1 and �2. Note that � diverges as the
frequency approaches the band edge whereas �1 and �2 are
slowly varying functions even near the band edge. Thus the
calculation of �1 and �2 generally leads to significantly more
stable numerical results than directly calculating �.

Here we consider the TE guided modes �i.e., electric field
primarily in the xz plane� of a Si air-bridge PCW. The guided
modes can be obtained by a preconditioned eigensolver21

with a tensorial average of the dielectric constant near
interfaces.22 The perturbation potential is evaluated using the
continuous components on interfaces.23

The radiation modes are calculated by considering the
PCW supercell delineated in dashed lines in Fig. 1 �the one
used in actual calculation is much longer along x� as one
period of a two-dimensional grating in the x-z plane. The
mode field for a given plane-wave incident upon the PCW
top surface can be obtained by any grating diffraction
theory.24,25 Due to the artificial x periodicity imposed by the
grating theory, this treatment is equivalent to calculating the
radiation loss for an array of parallel PCWs. For a suffi-
ciently large spacing between waveguides, the radiation
losses of adjacent waveguides are independent of each other
for weak scattering. Figure 2�a� clearly shows that only the
first two rows �nx= �1, �2� contribute significantly to the
radiation loss. For each row, data plotted in symbols and
lines are obtained by two supercell sizes differing by 50%.
Their small differences of �1 confirm that adjacent
waveguides do not affect each other. The backscattering loss
shows even stronger dominance by the first row �Fig. 2�b��.
Obviously, this can be attributed to the fact that the scattering

matrix elements 
−	�Â�	� and 
k�Â�	� involve �	�x�,
which decays very fast with x.

III. ANALYTIC FORMULAS FOR BACKSCATTERING
AND RADIATION LOSSES

Interestingly, the factors �1 and �2 roughly have the same
order of magnitude in Fig. 2. As a consequence, the back-
scattering loss ��2ng

2� dominates the radiation loss ��1ng�,
which can be seen from their ratio

x

z

�
1

2

3

-3

-2

-1
nz

nx

Eeff

FIG. 1. In-plane view of a line-defect waveguide in a photonic
crystal slab.
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�2ng
2

�1ng
� ng � 1 �for ng � 10� .

Numerical simulations of a few other PCW structures
showed similar dominance.9,26 Mathematically, the ng

2 term
surely dominates the ng term in Eq. �11a� for a sufficiently
large ng. But the ng threshold for the onset of this dominance
depends on �1 and �2 and could be too large to be observed
�e.g., ng�1000�. To ascertain the universal dominance of
backscattering in practically observable ng ranges and to ex-
plore the underpinning mechanism of this dominance, an
analytic study is needed. Moreover, such a study may offer
insight into the interaction between the mode field and
roughness.

We have performed analytic calculation of the factor �2
with some simple reasonable assumptions. As a first step, we
assume a guided mode field of the form E	�e−�xx/2ei	z. Af-
ter some calculation, we find

I�− 	,	,nx� = ��r0tslab/4Umc�2��12�2�Eef f ,nx
�4�2Iang,

Iang =� ei�2	r0��sin �−sin ���−�xr0�2+cos �+cos ���e−��−���r0/lcd��d� ,

�13�

where �12 is the dielectric constant difference, Eef f ,nx
is the

effective field at the hole’s inner edge ��=� in Fig. 1�. Typi-
cally, the correlation length lc is small. For e−r0/lc �1, �xlc
�1, and 2	lc�1, one finds

Iang � �4�lc/r0�I0�2�xr0� , �14�

where I0�x�= I0�x�exp�−x� and I0 is the modified Bessel
function of the first kind. One can show that Eq. �14� still
holds for a more general form of the field E	

�e−�xx/2GuGei�	+G�z under two scenarios: �1� the mode is
dominated by Fourier terms satisfying Glc�1 so that the
phase of each eiGz varies little within one correlation length
and �2� near the band edge where �	�x���−	�x�. For the

second scenario, the phases of �	�x� and �−	
� �x� almost ex-

actly cancel each other in 
−	�Â�	� and become irrelevant.
When these conditions are not satisfied, the spatial phase
variations tend to reduce Iang below the value given in Eq.
�14�.

For a guided mode, we can define a modal field ampli-

tude, Ēsp,	, by U	=�0Ēsp,	
2 wdtslab /2 and normalize the effec-

tive field as eef f ,	=Eef f ,	 / Ēsp,	. Then combining Eqs. �11c�,
�13�, and �14�, we obtain

�2 � 2Nx,back��n1
2 − n2

2�2�k0
2�2lcr0/awd

2��eef f ,	�4I0�2�xr0� ,

�15�

where k0=2� /�, n1
2−n2

2=�12 /�0, and 2Nx,back is the effec-
tive number of rows of holes contributing to backscattering.
For numerical estimate, we assume Nx,back�1, wd=w0
	�3a. In addition, Eef f ,	 is obtained by averaging �E	�2 at
the inner hole edge across the slab thickness. We find that
eef f ,	 typically varies around 0.3–0.4 in the slow light re-
gime. The decay constant �x�0.77�2� /a� is obtained by
fitting the mode energy against x near the band edge. Note
I0�2�xr0� is a slowly varying function for this parameter
range of interest. Figure 2�b� shows that Eq. �15� gives a
reasonable estimate of the order of magnitude of �2 and its
trend. There is an overestimate of two to three times because
we have neglected the following factors: �a� the vector nature
of the field; �b� the high-G Fourier components; and �c� the
variation in the field along y.

For the radiation modes, considering two polarizations
��=1,2� and two propagation directions �sz= �z�, the sum
over k in Eq. �11b� becomes k→�,sz

LxLy

�2��2 �dkxdky, where
Lx and Ly are the transverse dimensions of the normalization
volume. Note the final result of �1 is independent of LxLy
because I�k ,	 ,nx� · �Uk���LxLy�−1 in Eq. �11b�. One can then
show that

�1 � 2Nx,rad�n1
2 − n2

2�2nsub
3 �k0

4�2lcr0tslab/awd�

��eef f ,	ēef f ,k�2I0��xr0� , �16�

where ēef f ,k is the normalized field amplitude at the hole
inner edge averaged over all k states, nsub=1 is the substrate
refractive index, and 2Nx,rad is the effective number of rows
of holes contributing to radiation loss. Comparing Eq. �15�
and Eq. �16�, we find

�1

�2
�

Nx,radnsub
3 k0

2wdtslab

�Nx,back
·

�ēef f ,k�2

�eef f ,	�2
·

I0��xr0�
I0�2�xr0�

. �17�

With Nx,rad, Nx,back=1�2, wd=w0, tslab�220 nm, �x
�0.5�2� /a�, and normalized fields eef f ,	, ēef f ,k�0.5, each
ratio in Eq. �17� is on the order of unity. This equation there-
fore predicts that �1 and �2 are generally on the same order.
Therefore, this analytic study explains why the backscatter-
ing generally dominates, �2ng

2��1ng, in the slow light re-
gime ng�10. Note that Eqs. �15� and �16� contain no fast-
varying functions, which implies that �1 and �2 should be
fairly insensitive to most structure parameters for a typical
PCW.
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FIG. 2. �Color online� Loss factors as a function of frequency
and the contribution from each pair of rows of holes. �a� Radiation
loss factor �1; and �b� backscattering factor �2 and the analytic
estimate. PCW parameters: �=430 nm, r0 /a=0.25, tslab=200 nm,
�=3 nm, and lc=40 nm.
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Note that prior scattering loss formulas still involve the
photonic crystal mode field and the Green’s function,9 which
must be obtained through further computation. Our analytic
loss formulas, Eqs. �11a�, �15�, and �16�, do not have these
terms, and can be evaluated almost by hand. More impor-
tantly, the ratio of �1 and �2 derived from these formulas, as
presented in Eq. �17�, gives a general mathematical proof of
the dominance of the backscattering loss over the radiation
loss, along with a predicted dominance threshold ng�10.
Prior numerical studies discovered this dominance in a lim-
ited number of structures with specific parameters.9,26 How-
ever, the generality of the dominance and its threshold ng
were not clearly determined in numerical studies.

IV. DISCUSSION

A. Loss dependence on structure and roughness parameters
and loss reduction strategy

As the backscattering loss dominates, we focus on the
dependences of �2 on several key roughness/structure pa-
rameters. Note that the tensorial average of the dielectric
function near interfaces is found to significantly improve the
convergence with the spatial grid size, as shown in Fig. 3�a�.
This allows us to study small structure parameter changes.
First, we examine the limitation of the preceding analytic
results due to the assumption of small lc. The dependences of
�2 on lc for various normalized 	 values are plotted in Fig.
3�b�. For guided modes near the band edge �	a /2��0.5�,
�2�lc� is almost perfectly linear. As discussed above, this
linearity predicted in Eq. �15� is due to �	�x���−	�x� near
the band edge, which causes phase cancellation in


−	�Â�	�. Away from the band edge, the phase variation
causes the integral Iang to become sublinear at large lc values
�but Eqs. �15� and �16� remain useful as estimates�, which is
also confirmed in Fig. 3�b�. Second, the dependence on the
waveguide width is studied in Fig. 3�c�. The loss factor �2
could be reduced by a factor about 5 from wd=0.83w0 to

1.1w0 near the mode edge. Third, in most experimental
works, the air hole diameter and slab thickness usually
spread over certain ranges �e.g., r0 /a :0.23–0.29 and
tslab :0.19–0.25 �m� and the exact values may vary due to
uncertainties in fabrication processes. Our simulations show
that �2 varies insignificantly over the typical ranges of a, r0,
and tslab. The variation of �2�	a /2��0.5� is plotted against
r0 /a in Fig. 3�d�.

The analytic and computational studies offer insight into
the loss mechanism and point to promising pathways to loss
reduction. First, among four essential geometric parameters
�r, a, tslab, and wd�, wd appears to be the only one that allows
for substantial loss reduction. Second, the spatial phase
analysis in the derivation of Eq. �15� suggests that designing
guided modes with accentuated high-wave-number Fourier
components might help reduce the loss due to random rough-
ness. But the eigenfrequency and other deterministic charac-
teristics of such a mode also tend to be sensitive to the varia-
tions in structure parameters �mean value�. Thus, ingenious
designs are needed to account for both statistical and deter-
ministic properties. Third, manipulating the polarization,
through introducing anisotropic materials, for example,
could yield loss much lower than that predicted in Eq. �15�,
which neglects the polarization. Lastly, Eqs. �15� and �16�
and the spatial phase analysis may offer new insight into the
mode shaping effect.27

B. Comparison with experiments

In Fig. 4, we compare with experimental results from Ref.
10 using �=3 nm and lc=40 nm suggested therein. Evi-
dently, our theory agrees well with experiments for �̃
�0.273, including the upswing of the � /ng

2���2� curve near
the band edge. This can be partially explained by the fact that
the integral of the guided mode intensity �Eb�x��2 over the
hole surface increases with the group index.27 However, a
full explanation must be based on the characteristics of the

random potential matrix element 
−	�Â�	�. As discussed

above, the phase cancellation in 
−	�Â�	� causes an in-
crease in Iang and �2 near the band edge. Due to the interplay
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FIG. 3. �Color online� Variation in �2 with �a� grid size per edge
of the unit cell, with tensorial average 
��ij and without �up to 30%
oscillation�; �b� correlation length lc, for modes at different 	a /2�;
�c� PCW width; and �d� hole radius. PCW parameters: a=420 nm,
r0 /a=0.25, tslab=220 nm, �=3 nm, and lc=40 nm.
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FIG. 4. �Color online� Comparison with experimental results in
Ref. 10. The experimental spectrum is shifted to align the band edge
with the theory.
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between the spatial phase of the mode and the roughness,
this upswing is stronger for larger correlation lengths. Be-
cause �1 and �2 are not constant in general, a simple power
law fitting ��ng

� of experimental data would unlikely give
consistent � values, which agrees with the findings of Ref.
27. Note that if the coupling loss28,29 is included, the loss-ng
relation could even become sublinear �or logarithmic�, espe-
cially for short waveguides. Above �̃=�a /2�c=0.273, the
localized band tail states21,30 of the second guided mode
�band edge �̃�0.281� introduce in the experimental spec-
trum a broad resonance accompanied by a “softened” vg at
the nominal band edge.31 This effect is beyond the scope of
this work. Fortunately, this effect can be avoided by design-
ing the second mode above the useful spectral range of the
first mode. Below a sufficiently small vg, multiple scattering
occurs for the first mode, accompanied by undesirably high
loss.11,26,31–33 The studies presented here could help reduce
scattering losses and delay the onset of this regime.

In this work, we have considered loss introduced by
guided and radiation modes with real 	 values. In a nonper-
turbed photonic crystal structure �including a PCW�, modes
with complex 	 values generally arise locally near the end
faces and affect the end-face coupling loss34 but not the
propagation loss of a truly guided mode. The propagation
loss is generally more important for a sufficiently long pho-
tonic crystal waveguide. Also within the photonic band gap
of a PCW, those modes with complex 	 values usually do
not carry away energy themselves and thus may not intro-
duce propagation loss directly. Some higher order �multiple�
scattering processes in a PCW with random perturbations

may involve these modes as an intermediate step. These mul-
tiple scattering processes are usually negligible in practically
useful �relatively low loss� spectral ranges of photonic crys-
tal waveguides, as discussed in the comparison with experi-
mental data above.

V. CONCLUSION

In summary, analytic formulas, Eqs. �11a�, �15�, and �16�,
of the PCW scattering losses can be obtained despite the
complexity of the PCW mode fields. With these formulas,
the loss of a typical photonic crystal waveguide can be esti-
mated almost by hand. The analytic study reveals that the
interplay between the mode characteristics and the structure
roughness may hold the key to loss reduction. These results
are corroborated by systematic simulations with varying
structure parameters. As a byproduct, the cross-sectional
eigenmode orthogonality relation for a 1D periodic system
may be applicable to other problems, such as electrons in a
polymer chain or a nanowire.

ACKNOWLEDGMENTS

We are grateful to David Vanderbilt, Steven G. Johnson,
Chee Wei Wong, Philippe Lalanne, Stephen Hughes, Eiichi
Kuramochi, Fabian Pease, Leonard C. Feldman, George K.
Celler, and George Sigel for helpful discussions. This work
is supported by AFOSR MURI under Grant No. FA9550-08-
1-0394 �G. Pomrenke�.

*Electronic address: wjiangnj@rci.rutgers.edu
1 Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab,

Nature �London� 438, 65 �2005�.
2 Y. Q. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, Appl.

Phys. Lett. 87, 221105 �2005�.
3 L. L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, Appl.

Phys. Lett. 90, 071105 �2007�.
4 J. T. Mok and B. J. Eggleton, Nature �London� 433, 811 �2005�.
5 M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi,

and I. Yokohama, Phys. Rev. Lett. 87, 253902 �2001�.
6 W. Bogaerts, P. Bienstman, and R. Baets, Opt. Lett. 28, 689

�2003�.
7 D. Gerace and L. C. Andreani, Opt. Lett. 29, 1897 �2004�.
8 S. G. Johnson, M. L. Povinelli, M. Soljačić, A. Karalis, S. Ja-

cobs, and J. D. Joannopoulos, Appl. Phys. B: Lasers Opt. 81,
283 �2005�.

9 S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, Phys. Rev.
Lett. 94, 033903 �2005�.

10 E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe,
and L. Ramunno, Phys. Rev. B 72, 161318 �2005�.

11 R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, Phys. Rev.
Lett. 101, 103901 �2008�.

12 M. L. Povinelli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos,
and M. Soljačić, Appl. Phys. Lett. 84, 3639 �2004�.

13 B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, Phys. Rev.

B 78, 245108 �2008�.
14 N. Le Thomas, H. Zhang, J. Jagerska, V. Zabelin, R. Houdre, I.

Sagnes, and A. Talneau, Phys. Rev. B 80, 125332 �2009�.
15 A. Petrov, M. Krause, and M. Eich, Opt. Express 17, 8676

�2009�.
16 J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, Opt.

Express 18, 15484 �2010�.
17 L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and

T. F. Krauss, Opt. Express 15, 13129 �2007�.
18 S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu,

E. Lidorikis, and J. D. Joannopoulos, Phys. Rev. E 66, 066608
�2002�.

19 D. Marcuse, Theory of Dielectric Optical Waveguides �Aca-
demic Press, San Diego, 1991�.

20 G. Lecamp, J. P. Hugonin, and P. Lalanne, Opt. Express 15,
11042 �2007�.

21 W. Jiang and C. D. Gong, Phys. Rev. B 60, 12015 �1999�.
22 S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173

�2001�.
23 S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, J. D.

Joannopoulos, and Y. Fink, Phys. Rev. E 65, 066611 �2002�.
24 W. Jiang and R. T. Chen, J. Opt. Soc. Am. A 23, 2192 �2006�.
25 We also used the finite difference time-domain technique but

found that it required very long simulation time to obtain the
frequency resolutions needed.

SONG, INTEGLIA, AND JIANG PHYSICAL REVIEW B 82, 235306 �2010�

235306-6

http://dx.doi.org/10.1038/nature04210
http://dx.doi.org/10.1063/1.2138367
http://dx.doi.org/10.1063/1.2138367
http://dx.doi.org/10.1063/1.2475580
http://dx.doi.org/10.1063/1.2475580
http://dx.doi.org/10.1038/433811a
http://dx.doi.org/10.1103/PhysRevLett.87.253902
http://dx.doi.org/10.1364/OL.28.000689
http://dx.doi.org/10.1364/OL.28.000689
http://dx.doi.org/10.1364/OL.29.001897
http://dx.doi.org/10.1007/s00340-005-1823-4
http://dx.doi.org/10.1007/s00340-005-1823-4
http://dx.doi.org/10.1103/PhysRevLett.94.033903
http://dx.doi.org/10.1103/PhysRevLett.94.033903
http://dx.doi.org/10.1103/PhysRevB.72.161318
http://dx.doi.org/10.1103/PhysRevLett.101.103901
http://dx.doi.org/10.1103/PhysRevLett.101.103901
http://dx.doi.org/10.1063/1.1723686
http://dx.doi.org/10.1103/PhysRevB.78.245108
http://dx.doi.org/10.1103/PhysRevB.78.245108
http://dx.doi.org/10.1103/PhysRevB.80.125332
http://dx.doi.org/10.1364/OE.17.008676
http://dx.doi.org/10.1364/OE.17.008676
http://dx.doi.org/10.1364/OE.18.015484
http://dx.doi.org/10.1364/OE.18.015484
http://dx.doi.org/10.1364/OE.15.013129
http://dx.doi.org/10.1103/PhysRevE.66.066608
http://dx.doi.org/10.1103/PhysRevE.66.066608
http://dx.doi.org/10.1364/OE.15.011042
http://dx.doi.org/10.1364/OE.15.011042
http://dx.doi.org/10.1103/PhysRevB.60.12015
http://dx.doi.org/10.1364/OE.8.000173
http://dx.doi.org/10.1364/OE.8.000173
http://dx.doi.org/10.1103/PhysRevE.65.066611
http://dx.doi.org/10.1364/JOSAA.23.002192


26 S. Mazoyer, J. P. Hugonin, and P. Lalanne, Phys. Rev. Lett. 103,
063903 �2009�.

27 M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L.
O’Faolain, and T. F. Krauss, Phys. Rev. B 80, 195305 �2009�.

28 R. A. Integlia, W. Song, J. Tan, and W. Jiang, J. Nanosci. Nano-
technol. 10, 1596 �2010�.

29 Y. A. Vlasov and S. J. McNab, Opt. Lett. 31, 50 �2006�.
30 S. John, Phys. Rev. Lett. 58, 2486 �1987�.
31 M. Patterson, S. Hughes, S. Combrie, N. V.-Quynh Tran, A. De

Rossi, R. Gabet, and Y. Jaouen, Phys. Rev. Lett. 102, 253903
�2009�.

32 S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasen-
ović, L. Kuipers, D. M. Beggs, and T. F. Krauss, Opt. Express
18, 14654 �2010�.

33 J. Topolancik, B. Ilic, and F. Vollmer, Phys. Rev. Lett. 99,
253901 �2007�.

34 W. Jiang, R. T. Chen, and X. J. Lu, Phys. Rev. B 71, 245115
�2005�.

SLOW LIGHT LOSS DUE TO ROUGHNESS IN PHOTONIC… PHYSICAL REVIEW B 82, 235306 �2010�

235306-7

http://dx.doi.org/10.1103/PhysRevLett.103.063903
http://dx.doi.org/10.1103/PhysRevLett.103.063903
http://dx.doi.org/10.1103/PhysRevB.80.195305
http://dx.doi.org/10.1166/jnn.2010.2039
http://dx.doi.org/10.1166/jnn.2010.2039
http://dx.doi.org/10.1364/OL.31.000050
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://dx.doi.org/10.1103/PhysRevLett.102.253903
http://dx.doi.org/10.1103/PhysRevLett.102.253903
http://dx.doi.org/10.1364/OE.18.014654
http://dx.doi.org/10.1364/OE.18.014654
http://dx.doi.org/10.1103/PhysRevLett.99.253901
http://dx.doi.org/10.1103/PhysRevLett.99.253901
http://dx.doi.org/10.1103/PhysRevB.71.245115
http://dx.doi.org/10.1103/PhysRevB.71.245115

