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In this paper, we model and experimentally observe the far-field radiation produced by interfering beams
propagating in two-dimensional (2D) slab waveguides. Using a transmission-line analogy, we compare
the 2D propagation with standard three-dimensional (3D) far-field representations and derive the 2D
conditions for using standard far-field approximations. Then we test our theoretical results by experi-
mentally observing the 2D far-field pattern produced by a 1 × 3multimode interference (MMI) coupler on
a silicon nanomembrane. The MMI outputs are connected to a slab silicon waveguide, and the far field is
observed at the edge of the silicon slab. This represents the observation of 2D far-field pattern produced
by an array of on-chip radiators. © 2011 Optical Society of America
OCIS codes: 130.2790, 130.3120, 070.2580.

1. Introduction

On-chip optical phased arrays (OPAs) that may pro-
vide optical beam steering have been used to realize
fast (18GHz) optical switches [1]. In such systems, an
input optical beam is split into several arms and
properly phase shifted. The output waveguides of
the OPA are connected to a slab waveguide in which
the field propagates freely in two dimensions and is
confined in the direction perpendicular to the array’s
plane. These setups may be a first step toward OPAs
in free space, when properly combined with optical
antennas, in order to control the near- and far-field
radiation on chip.

In this paper, we model field propagation gener-
ated by an array of point sources confined in a silicon
slab waveguide. The silicon slab thickness is chosen
to be small enough for single-mode operation. We de-
rive far-field conditions for such 2D radiation in order
to use simple array factors to determine the on-chip
radiation from the OPAs. Finally, we fabricate an

on-chip three-element OPA and present an experi-
mental setup to observe the 2D far-field pattern.
Using a 1 × 3 multimode interference (MMI) coupler,
we feed the array elements with uniform power while
creating a phase shift in the array. Then we compare
the observed far-field interference pattern with the
theoretical calculations. We show that the observa-
tion plane is in fact in the far-field zone. Therefore,
this is the first observation of a 2D optical far-field
interference pattern.

Although we investigate 2D propagation in a sili-
con nanomembrane slab waveguide, the results of
this study can be used for problems that involve free
propagation in 2D and confinement in the third di-
rection such as in Ref. [2], in which a surface plasmon
polariton (SPP) wave propagation at the surface of
a metallic film is studied. Note that due to the high
loss of the SPP waves and the low sensitivity of the
measurement setups, the interference pattern was
observed in the middle zone, as opposed to the far-
field zone. The presented work here may be inter-
preted as an application of the theory of Flatland
Optics [3], together with the demonstration of an op-
tical setup to observe and measure the 2D far-field
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patterns and a comparison between theoretical cal-
culations and measurements. There have been ex-
perimental efforts aimed to confirm the concept of
Flatland Optics [4,5]. However, to the best of our
knowledge, this is the first observation of 2D optical
far-field on-chip radiation and interference.

2. Two-Dimensional Far-Field Formulation

In this section, we model the field radiated by a point
source or an array of point sources in a slab dielectric
waveguide. The vertically symmetric structure
shown in Fig. 1 is well known to support the trans-
verse electric ðTE;Ex ¼ Ez ¼ Hy ¼ 0Þmode without a
cutoff thickness. We assume that the slab thickness
is small enough to allow only single-mode operation
in the z direction. We focus here on TE-polarized
propagation, assuming that a point source excites
this slab waveguide with the field distribution
Ey ¼ f ðzÞδðxÞδðyÞ, where f ðzÞ is the field distribution
along z, given as

f ðzÞ ¼

8>><
>>:

A cosðβzhÞ exp½−αðz − hÞ� z > h
A cosðβzzÞ jzj ≤ h

A cosðβzhÞ exp½αðzþ hÞ� z < −h
;

with the well known dispersion relation:
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εcμω2 − β2ρ

q
; where β2ρ ¼ β2x þ β2y ;

α ¼ −iðεcμω2 − β2ρÞ1=2. In order to calculate the field
emitted by such a point source in the slab, we
notice that a TE ðEx ¼ Ez ¼ Hy ¼ 0Þ-polarized line
source along the y axis in the form of Ey ¼
f ðzÞ expð−jβyyÞδðxÞ excites the TE-polarized modes
with the electric field:

Ey ¼
j

2βx
f ðzÞ expð−jβyyÞ expð−jβxxÞ: ð1Þ

Since δðxÞδðyÞ ¼ δðxÞ
2π

R
∞
−∞

expð−jβyyÞdβy, the field
emitted by a point source in the slab may be written,
due to linearity, as the superposition of modes excited
by line sources with dependence in the form of
expð−jβyyÞ:

Ey ¼
Z

∞

−∞

j
4πβx

f ðzÞ expð−jβxxÞ expð−jβyyÞdβy: ð2Þ

In order to calculate this integral, we notice that

Hð2Þ
0 ðβρρ;φÞ ¼

1
π

Z
3π=2þj∞

π=2−j∞
exp½jβρρ cosðζ − φÞ�dζ; ð3Þ

where (ρ;φ; z) is the cylindrical coordination [6].
Using Eq. (3), one can show that [Appendix A]Z

∞

−∞

1
βx

expð−jβxxÞ expð−jβyyÞdβy ¼ πHð2Þ
0 ðβρρÞ: ð4Þ

Therefore, a point source given as Ey ¼ f ðzÞδðxÞδðyÞ
generates a propagating field in the slab as follows:

Ey ¼
Z

∞

−∞

j
4πβx

f ðzÞ expð−jβxxÞ expð−jβyyÞdβy

¼ j
4
f ðzÞHð2Þ

0 ðβρρÞ: ð5Þ

As expected, this result coincides with the 2DGreen’s
function Gðx; yÞ ¼ j

4H
ð2Þ
0 ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ solution to the

Helmholtz equation ∇2Gþ k2G ¼ δðx; yÞ.
Our goal is to obtain the far-field radiation from an

array of line sources arbitrarily located along the y
axis. In the far field, we can write [7]

Hð2Þ
0 ðβρρÞ ≈

ffiffiffiffiffiffiffiffiffiffi
2j

πβρρ

s
expð−jβρρÞ for βρρ ≫ 0; ð6Þ

where ρ ¼ j�ρ − �ρ0j ∼ j�ρ0j for j �ρ j ≫ j�ρ0j, where j �ρ j and
j�ρ0j are the vectors (in the x–y plane) of the observa-
tion point and the source, respectively. In the phase
term in Eq. (6),

Fig. 1. (Color online) (a) Geometry of the silicon slab waveguide. (b) Schematic of the waveguide array connected to a large slab
waveguide.
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ρ ¼ j�ρ − �ρ0j ∼ j �ρ j − j�ρ0j cosðφ − φ0Þ þ j�ρ0j2
2j �ρ j

∼ j �ρ j − j�ρ0j cosðφ − φ0Þ for βρ
j�ρ0j2
2j �ρ j ≪ 1: ð7Þ

Therefore, the conditions to approximate the Green’s
function with a cylindrical wave in the far field are
similar to those applied to spherical waves in 3D
(free-space radiation) [8]:

1. βρρ ≫ 0, or the effective wavelength should be
much smaller than the observation distance;

2. j �ρ j ≫ j�ρ0j, or the whole scattering object size
(or the array size) should be much smaller than
the observation distance; and

3. βρ j�ρ0 j2
2j �ρ j ≪ 1 for the phase condition.

Of course, there are relevant differences with far-
field radiation in free space: in this “flatland”
far-field radiation, the local field radiated by a point
source appears to be a slab (TE) mode, for which the
magnetic field and propagation direction are not
orthogonal. In other words, the far field is not a TEM
wave, for which β2 ¼ ω2με. This is the main differ-
ence between 2D and 3D far-field radiation. In 2D,
the polarization inherently depends on the level of
confinement in the third (z) direction. Without a lack
of generality, let us consider an observation point in
the far field near the x axis (y ≪ x; jzj < h). We can
represent the propagating mode as a transmission-
line mode as in [9]. The transmission-line (per unit
length) voltages and currents are defined as V ¼
Eyjz¼0 and I ¼ −Hzjz¼0, which satisfy the standard
transmission-line equations:

dV
dx

¼ ∂Ey

∂x

����
z¼0

¼ −jωμHz

����
z¼0

¼ jωμI

dI
dx

¼ −
∂Hz

∂x

����
z¼0

¼ jωεEy

����
z¼0

−
∂Hx

∂z

����
z¼0

¼ jωεeffV ;

where

εeff ¼ ε −
∂Hx
∂z

����
z¼0

jωεEy

����
z¼0

: ð8Þ

Thus, the effective permittivity of the mode is mod-
ified by presence of a longitudinal component of
magnetic field Hx. The dispersion relation for the
modes in the far field is compactly written in analogy
with the regular free-space radiation:

β2ρ ¼ ω2μεeff : ð9Þ

In other words, within this framework, it is possible
to treat the radiation from arbitrary point sources
within the slab (2D) as one of the point sources in free
space (3D), by simply considering an effective form of

permittivity as defined in Eq. (8), similar to the
concept of “flatland optics” [3].

Note that the definition of point source in the form
of an impressed field given above lets us directly
derive the field radiated from a waveguide interface
into the slab region. In Fig. 1(b), at x ¼ 0, where the
array waveguides are connected to the slab wave-
guide, the waveguides’ facets may be treated as col-
lections of 2D point sources defined above, and thus,
following the previous theoretical formulation, the
overall radiated field inside the slab may be de-
scribed as the one produced by an OPA. In particular,
on the plane x ¼ 0, the field may be calculated as

XN
n¼1

Z
We=2

−We=2

jAn

4π expð−jϕnÞHð2Þ
0

�
ω ffiffiffiffiffiffiffiffiffiffiμεeff
p �����ρ − �dn − y

����
�
dy;

ð10Þ
where N is the number of array elements, An is the
field amplitude of the nth array waveguide,We is the
effective width of a waveguide, including the pene-
tration depth due to the Goos–Hänchen shift, �dn is
the position (center) of the array elements, and φn
is the input phase of the nth array waveguide. Also,
εeff is the effective permittivity defined in Eq. (8).
This formula can be simplified as shown in Eq. (7)
in the far-field zone.

3. Experimental Observation of the 2D Far Field

In order to validate our theoretical results, we have
designed and fabricated a three-element phased ar-
ray fed by 1 × 3 MMI couplers. A schematic of a 1 × 3
MMI coupler is shown in Fig. 2. The input and output
access waveguide widths are designed to be wide en-
ough to ensure nearly ideal self-imaging behavior
[10]. The MMI output waveguides’ phase values
are given as θq ¼ N−1−4q2

4N π [11–13], where N is the
number of the MMI output (N ¼ 3) and q is the port
number, as shown in Fig. 2. For 1 × 3MMIs, the mid-
dle output waveguide has a 60° phase lead compared
to the two side ones. The MMI output waveguide
widths are tapered at the end to 500nm for single
mode operation. Figure 2(b) shows the MMI coupler
simulations by the vectorial eigenmode expansion si-
mulator in FIMMPROP. The variations of the output
uniformity and insertion loss are shown as a function
of the MMI length are shown in Fig. 2(c).

The MMIs are fabricated on a silicon-on-insulator
substrate with a 3 μm buried oxide layer. The silicon
nanomembrane thickness 2h ¼ 230nm. The MMIs
are patterned using electron beam lithography,
followed by reactive ion etching, lift-off pattern inver-
sion, and plasma-enhanced chemical vapor deposi-
tion of a 1 μm thick silicon dioxide film for the top
cladding. SEM pictures of the fabricated MMIs are
shown in Fig. 3.

The MMI outputs are connected to a 2 cm wide and
1 cm long silicon slab waveguide. Using Eq. (7) for
βρ ¼ 11:8 rad

μm, j�ρ0j ≤ 9:3 μm, and j�ρ0j ≈ 10; 000 μm, we
know that the silicon slab waveguide is long enough
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for the far-field conditions to be satisfied. The result-
ing far-field beam is detectable at the exterior edge of
the silicon nanomembrane. The silicon nanomem-
brane is etched away from the chip edge. This sepa-
rates the background noise from the light coupled
into the silicon substrate. The transverse-electric
(TE) field from an external cavity tunable laser
source is coupled into the input waveguides through
a tapered and focused polarization maintaining fiber.
A CCD camera captures top-down images of the scat-
tered light at the etched silicon nanomembrane, as
shown in Fig. 4.

Figure 5 demonstrates the observed 2D far field and
compares it with the theoretical far-field expression gi-
ven by Eq. (10). The excellent agreement between the

Fig. 4. (Color online) Optical test setup. The slab waveguide re-
gion on the chip is 8:0mm long and is indicated by dashed lines.

Fig. 2. (Color online) (a) Schematic of the 1 × 3 MMI used for the far-field test. The inset shows the cross section of the waveguiding
structure. Access waveguide width, Ww ¼ 2 μm; MMI width, WMMI ¼ 9:3 μm; MMI length, LMMI ¼ 52:5 μm; MMI thickness,
2h ¼ 0:23 μm. (b) Eigenmode-decomposition-based simulation of the designed 1 × 3 MMI. (c) Calculated output uniformity and insertion
loss of the designed MMI.

Fig. 3. (Color online) SEM images of (a) 1 × 3 MMI coupler,
(b) 1 × 3 MMI coupler output, (c) output waveguides’ width tapers,
and (d) MMI output connections to the slab waveguide.

Fig. 5. (Color online) Two-dimensional far-field pattern of a 1 × 3
MMI with 3:1 μm separation between the output waveguides.
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theoretical calculations and experimental results sug-
gests that this formula, and also the experimental set-
up shown in Fig. 4, may be used to directly model and
characterize radiation problems that involve 2D con-
fined propagation. Also, Eq. (10) represents a solid de-
sign tool to tailor the phase of the different radiating
elements on chip to synthesize the desired 2D far-field
pattern.

4. Conclusions

We have presented here far-field modeling of 2D pro-
pagation in slab waveguides. The far-field conditions
and field formulations have been derived. In order to
experimentally observe the 2D far-field pattern, we
have fabricated a 1 × 3 MMI coupler on a silicon na-
nomembrane. The MMI outputs are connected to a
slab silicon waveguide, and the far field is observed
at the edge of the silicon slab. These results may be
used in the design and fabrication of OPA-based op-
tical switches in integrated photonics, such as
in Ref. [1].

Appendix A

We derive here an integral representation of the 2D
Hankel function of use to derive Eq. (4) above. We
know that [4]

Hð2Þ
0 ðβρρ;ϕÞ ¼

1
π

Z
3π=2þj∞

π=2−j∞
exp½jβρρ cosðζ − φÞ�dζ:

One can write

Hð2Þ
0 ðβρρ;φÞ¼

1
π

Z πþj∞

0−j∞
exp½−jβρρsinðζ−φÞ�dζ

¼1
π

Z πþj∞

0−j∞
exp½−jβρρsinðζÞcosðφÞ�

×exp½jβρρcosðζÞsinðφÞ�dζ

¼1
π

Z πþj∞

0−j∞
exp½−jβρxsinðζÞ�exp½jβρycosðζÞ�dζ:

By changing the variables, one can show

Hð2Þ
0 ðβρρ;φÞ ¼

1
π

Z ζ¼πþj∞

ς¼0−j∞
exp½−jβρx sinðζÞ�

× exp½jβρy cosðζÞ�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2ρ − β2x
q dβx;

because

π < ξ< πþ j∞→ −j∞< βx < 0j and βρ < βy <∞;

π=2< ξ< π → 0< βx < βρ and 0< βy < βρ;
0< ξ< π=2→ 0< βx < βρ and − βρ < βy < 0;

− j∞< ξ< 0→ −j∞< βx < 0j and −∞< βy < −βρ:

Thus

Hð2Þ
0 ðβρρ;φÞ ¼

1
π

Z βy¼∞

βy¼−∞

exp½−jβxx�

× exp½jβyy�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2ρ − β2x
q dβx:

Therefore, we can conclude

Z
∞

−∞

1
βy

expð−jβxxÞ expð−jβyyÞdβx ¼ πHð2Þ
0 ðβρρÞ:

References
1. M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee,

“Optical spatial quantization for higher performance analog-
to-digital conversion,” IEEE Trans. Microw. Theory Tech. 56,
2143–2150 (2008).

2. R. Zia andM. L. Brongersma, “Surface plasmon polariton ana-
logue to Young’s double-slit experiment,”Nat. Nanotechnol. 2,
426–429. (2007).

3. A. W. Lohmann, A. Pe’er, D. Wang, and A. A. Friesem,
“Flatland optics: fundamentals,” J. Opt. Soc. Am. A 17,
1755–1762 (2000).

4. A. W. Lohmann, D. Wang, A. Pe’er, and A. A. Friesem,
“Flatland optics. II. basic experiments,” J. Opt. Soc. Am. A
18, 1056–1061 (2001).

5. A. W. Lohmann, A. Pe’er, D. Wang, and A. A. Friesem,
“Flatland optics. III. Achromatic diffraction,” J. Opt. Soc.
Am. A 18, 2095–2097.

6. A. Sommerfeld, Partial Differential Equations in Physics
(Academic, 1949).

7. M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables
(Dover, 1972).

8. C. A. Balanis, Advanced Engineering Electromagnetics
(Wiley, 1989).

9. A. Alù and N. Engheta, “Optical nanotransmission lines:
synthesis of planar left-handed metamaterials in the infrared
and visible regimes,” J. Opt. Soc. Am. B 23, 571–583 (2006).

10. A. Hosseini, H. Subbaraman, D. Kwong, Y. Zhang, and R. T.
Chen, “Optimum access waveguide width for 1 ×N multimode
interference couplers on silicon nanomembrane,” Opt. Lett.
35, 2864–2866 (2010).

11. E. R. Thoen, L. A. Molter, and J. P. Donnelly, “Exact modal
analysis and optimization of N ×N × 1 cascaded waveguide
structures with multimode guiding sections,” IEEE J. Quan-
tum Electron. 33, 1299–1307 (1997).

12. J. M. Heaton and R. M. Jenkins, “General matrix theory of
self-imaging in multimode interference (MMI) couplers,”
IEEE Photon. Technol. Lett. 11, 212–214 (1999).

13. A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen,
“Output formulation for symmetrically excited one-to-N
multimode interference coupler,” IEEE J. Sel. Top. Quant.
Electron. 6, 53–60 (2010).

1826 APPLIED OPTICS / Vol. 50, No. 13 / 1 May 2011


