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Optical properties of Fano-resonant metallic metasurfaces on a substrate
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Three different periodic optical metasurfaces exhibiting Fano resonances are studied in mid-IR frequency range
in the presence of a substrate. We develop a rigorous semianalytical technique and calculate how the presence of a
substrate affects optical properties of these structures. An analytical minimal model based on the truncated exact
technique is introduced and is shown to provide a simple description of the observed behavior. We demonstrate
that the presence of a substrate substantially alters the collective response of the structures suppressing Wood’s
anomalies and spatial dispersion of the resonances. Different types of Fano resonances are found to be affected
differently by the optical contrast between the substrate and the superstrate. The dependence of the spectral
position of the resonances on the substrate/superstrate permittivities is studied and the validity of the widely used
effective medium approach is re-examined.
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I. INTRODUCTION

Optical nanostructures exhibiting Fano resonances have
attracted significant attention from the research community
in recent years.1–12 As classical analogs of the quantum Fano
system,13 these systems represent elegant tabletop tools for
testing fundamental principles of physics.14 From the applica-
tions’ point of view, the possibility of trapping, enhancing,
and manipulating light in optical Fano nanostructures and
metamaterials is also very promising and has already been
demonstrated to be beneficial in sensing and biosensing,15–18

photovoltaics and thermophotovoltaics,19–21 and slow-light
generation.3

Fano resonances in optical metamaterials originate from
electromagnetic interactions between their constituents. Ac-
cording to the type of interaction, Fano resonances can be
classified into two groups: (a) coherent Fano resonances which
are the result of interferences between all of the meta-atoms
forming a periodic array, and (b) local Fano resonances
which originate from the complex local structure of individual
meta-atoms. While for the first class of these resonances,
periodic arrangement of a large number of metamolecules is
crucial, for the second class, even a single metamolecule may
exhibit a Fano resonance.2 However, in both cases the response
of the metasurface will depend on the dielectric environment.
For coherent metamaterials, it is well known that the presence
of a substrate modifies the far-field interactions,22,23 which
substantially alters the collective response. However, even
in the case of local Fano resonances, the presence of a
substrate can significantly modify the interaction between
the metamolecule’s constituents.24 Thus, understanding of
substrate effects in both cases is critical for basic understanding
of Fano resonances in experimentally relevant systems.

The geometry of the systems with Fano resonances can
vary from simple designs such as metal nanoparticles2 and
perforated films25–27 to structures with complex geometries
such as oligomers and dolmens.9–11,14

The simplest approach to describe the Fano resonances is a
mechanical toy model of coupled harmonic oscillators.3,6,7,28

In many cases, such a model provides sufficient insight
into the physics of the system; it allows one to fit optical
spectra and associate spectral features of the system with the

known properties of the mechanical Fano model. Nevertheless,
such simplified representation of a complex physical system
neglects various effects relevant for real structures. Among
these are substrate effects, effects of periodicity resulting
in a collective character of the electromagnetic response of
metamaterials, and geometry/proximity effects modifying the
interactions between metamolecules.

Another analytical description applicable to some relatively
simple systems, such as arrays of pointlike dipoles, is offered
by a dipole model.5,29–32 Indeed, a few of the above-mentioned
phenomena, including collective effects and Fano resonances,
can be adequately described by this model.33 However, there
are situations when the dipole model is inadequate. For
instance, as soon as the scatterers or the metamolecules
forming the array become comparable in size to the wavelength
of light, the dipole-dipole interaction mechanism breaks down
because interactions through higher multipoles come into play.
Incorporating substrate effects also represents a challenge for
the dipole model. To resolve these problems, the dipole model
has been extended by including effects of higher multipoles,34

found with the use of numerically calculated polarizabilities
of metamolecules and by applying the scattering-matrix
technique.35–37 However, after such generalizations, the dipole
model can no longer be considered analytical. To fully account
for all the above-mentioned effects, the approach which is be-
ing widely used is to apply a powerful yet time-consuming ab
initio numerical solvers of the Maxwell equations, or various
generalizations of hybrid numerical/analytical approaches.38

However, there is another very promising semianalytical
yet rigorous approach based on the modal-matching technique
(MMT). MMT has been proven to be very fruitful for describ-
ing various electromagnetic systems ranging from frequency-
selective surfaces and antenna arrays in radio frequency
domain39 to perforated metallic structures.40–43 In both cases,
the approach is relying on the expansion of a system-specific
polarization (e.g., the total current in the antennas or the
fields inside the holes) in the form of a superposition of
the eigenmodes satisfying appropriate boundary conditions.
It is important that, because the basis used for the expansion
takes into account metamolecules’ geometry, this approach
can account for the geometry-specific effects, including shape
resonances and proximity effects.44,45
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FIG. 1. (Color online) Schematic unit cell of the three structures
considered in this paper: (a) single-antenna, (b) double-antenna, and
(c) dolmen metasurfaces. In (c), two unit cells (separated by a dashed
line) are shown. (d) Shows the side view of the metasurfaces cladded
by the superstrate and the substrate.

In this paper, the semianalytical MMT based on the current
expansion39 is applied to study Fano resonances in two-
dimensional periodic arrays of metallic antennas on a substrate
(Fig. 1). The emphasis is on arrays of complex antennas reso-
nant in the mid-IR part of optical spectrum, which is important
for biosensing16,18 and thermophotovoltaic applications.19–21

MMT is shown to capture the metamolecule geometry as well
as the substrate effects and is easily expandable to the cases
of more complex geometries composed of several spatially
extended scatterers per unit cell. We develop a minimal model
of the MMT by truncating the electric-current basis of the full
model and demonstrate that even the resulting analytical model
is capable of quantitatively describing the optical properties
of the structures. The main emphasis of the paper is on the
effect of the substrate. It is demonstrated that with the model
in hand the MMT can predict the spectral positions of the
resonances and describe the interference among the different
scattering pathways provided by the different metamolecule’s
resonances.

The rest of the paper is organized as follows. In Sec. II a
general MMT based on the Rayleigh and current expansions
is derived. In Sec. III a minimal model is developed and
applied to study a periodic single-antenna metasurface (SAM),
shown in Fig. 1(a). In Sec. IV we analyze periodic double-
antenna metasurfaces (DAMs) [Fig. 1(b)], which are known
to exhibit a Fano resonance due to the interference of the
modes corresponding to symmetric and antisymmetric charge
distributions in the antenna pairs. Finally, in Sec. V a dolmen
structure formed by three antennas [Fig. 1(c)] and known to

exhibit a plasmonic analog of electromagnetically induced
transparency (EIT)6,7 is studied.

II. MODAL MATCHING TECHNIQUE:
THEORETICAL FORMALISM

In this section the electric current expansion technique is
generalized to the case of infinitesimally thin metallic antennas
of finite surface conductivity. Following Ref. 39, we rely on
the current expansion, but require the current in the plasmonic
antennas to be defined by the high-frequency conductivity of
the metal and the electric field right on the antennas’ surface. To
make the expressions more compact and keep the formulation
more general, the Dirac notation is used. Using the periodicity
of the structures the tangential components of the fields are
expanded in the superstrate (I) and the substrate (II) in the
plane-wave basis in terms of the amplitudes of the incident
(in,τ ), reflected (rn,τ ), and transmitted (tn,τ ) fields,

EI
‖ =

∑
n,τ

(
in,τ e

ikn,I
z z + rn,τ e

−ikn,I
z z

)|n,τ 〉,

EII
‖ =

∑
n,τ

tn,τ e
ikn,II

z z|n,τ 〉,
(1)

−ẑ × HI
‖ =

∑
n,τ

Y I
n,τ

(
in,τ e

ikn,I
z z − rn,τ e

−ikn,I
z z

)|n,τ 〉,

−ẑ × HII
‖ =

∑
n,τ

Y II
n,τ tn,τ e

ikn,II
z z|n,τ 〉,

where |n,τ 〉 = |nx,ny,τ 〉 represents the in-plane (tangential)
electric field of the nth diffracted plane wave with an in-
plane wave number kn

‖ = (kn
x ,kn

y ), a polarization state τ (s
or p polarization), and a wave admittance in the superstrate
(substrate) Y I

n,τ (Y II
n,τ ). The wave admittance of an s-polarized

plane wave is Yn,s = kn
z /(Z0k0) and that of a p-polarized

plane wave is Yn,p = εrk0/(Z0k
n
z ). In the above expressions,

kn
x = 2πnx/Px , kn

y = 2πny/Py , and kn
z =

√
εrk

2
0 − (kn

‖ )2 are,

respectively, the x, y, and z components of the wave vector
kn. k0 is the wave number of the wave in vacuum and εr is
the relative permittivity of the medium in which the wave is
propagating. Z0 ≈ 376.73� is the impedance of vacuum. The
spatial representation of |n,τ 〉 is given by

〈r‖|n,s〉 = exp
(
ikn

x x + ikn
y y

)
kn
‖
√

PxPy

{
kn
y x̂ − kn

x ŷ
}
, (2)

〈r‖|n,p〉 = exp
(
ikn

x x + ikn
y y

)
kn
‖
√

PxPy

{
kn
x x̂ + kn

y ŷ
}
. (3)

The surface current in the plasmonic antennas is expanded
with the use of the basis functions |jmα 〉 satisfying the boundary
condition of vanishing current on the antenna edges. The
electric current in the mth antenna within the unit cell takes
the form,

Jm =
∑

α

cm
α

∣∣jmα 〉
, (4)

where cm
α is the amplitude of the αth current mode. The precise

form of the functions |jmα 〉 depends on the antenna geometry,
which will be taken rectangular throughout the paper. For this
case, the explicit expressions for |jmα 〉 are given elsewhere.39
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The finite conductivity of the antennas is incorporated into
the model using the relation,

Jm = σEm
‖ (5)

where σ = ihεmk0 is the effective surface conductivity of the
antennas of thickness h and permittivity εm.46 The fields in
the substrate and the superstrate should satisfy the standard
continuity boundary condition over the interface between
them:

EI
‖ = EII

‖ , (6a)

−ẑ × HI
‖ = −ẑ × HII

‖ . (6b)

Over the antennas, the electric field is continuous and
Eq. (6a) still holds, however, a discontinuity in the magnetic
field appears due to the finite current in the antennas:

−ẑ × (
HI

‖ − HII
‖
) = J. (6c)

Combining these constraints together with the modal expan-
sions and using the orthonormality of the basis functions, we
obtain a system of three linear equations:

in,τ + rn,τ = tn,τ , (7a)

Y I
n,τ (in,τ − rn,τ ) − Y II

n,τ tn,τ =
∑
α,m

〈
n,τ

∣∣jmα 〉
cm
α , (7b)

∑
n,τ

〈
jmα

∣∣n,τ
〉
(in,τ + rn,τ ) = σ−1cm

α . (7c)

Equations (7a) and (7b) are obtained by multiplying
Eqs. (6a)–(6c) (from left) by 〈n,τ | and Eq. (7c) is obtained
by multiplying Eq. (5) (from left) by 〈jmα |. The scalar product
〈n,τ |j〉 is defined as

〈n,s|j〉 =
∫ ax/2

−ax/2

∫ ay/2

−ay/2

exp
(−ikn

x x − ikn
y y

)
kn
‖
√

PxPy

× {
kn
y jx(x,y) − kn

x jy(x,y)
}
dx dy, (8)

〈n,p|j〉 =
∫ ax/2

−ax/2

∫ ay/2

−ay/2

exp
(−ikn

x x − ikn
y y

)
kn
‖
√

PxPy

× {
kn
x jx(x,y) + kn

y jy(x,y)
}
dx dy, (9)

where jx(x,y) and jy(x,y) are the x and y components of the
current profile |j〉. Equations (7a)–(7c) can be solved to obtain
the amplitude of the scattered fields tn,τ and rn,τ in terms of
the antenna current modes cm

α :

tn,τ = 2Y I
n,τ

Y I
n,τ + Y II

n,τ

in,τ −
∑

α,m

〈
n,τ

∣∣jmα 〉
cm
α

Y I
n,τ + Y II

n,τ

, (10)

rn,τ = Y I
n,τ − Y II

n,τ

Y I
n,τ + Y II

n,τ

in,τ −
∑

α,m

〈
n,τ

∣∣jmα 〉
cm
α

Y I
n,τ + Y II

n,τ

, (11)

where the amplitude of the αth current mode in the mth antenna
cm
α satisfies:∑

α′,m′

{
σ−1δα,α′δm,m′ + Sm

α
m′
α′

}
cm′
α′ = χm

α . (12)

In Eq. (12), Sm
α

m′
α′ is the Green’s function that describes the

cross-talk between the αth current mode of the mth antenna
with the α′th current mode of the m′th antenna in the unit
cell. This coupling is mediated by the plane waves of all

(propagating and evanescent) diffraction orders n as given by
Eq. (13a). χm

α is the direct coupling strength of the αth current
mode of the mth antenna to the external field.

Sm
α

m′
α′ =

∑
n,τ

〈
jmα

∣∣n,τ
〉〈

n,τ
∣∣jm′

α′
〉

Y I
n,τ + Y II

n,τ

, (13a)

χm
α =

∑
n,τ

2Y I
n,τ

〈
jmα |n,τ

〉
Y I

n,τ + Y II
n,τ

in,τ . (13b)

In addition to the scattering characteristics, the eigenmodes
of the structure can also be determined by solving the secular
equation:

det
{
σ−1δα,α′δm,m′ + Sm

α
m′
α′

} = 0. (14)

In general, Eq. (14) can be satisfied only at complex fre-
quencies ω = ωr + iωi , showing that the eigenmodes have
a finite lifetime due to either Ohmic losses (when Re{σ } �= 0)
or radiative decay.42,43 A real eigenvalue ω may be ideally
achieved only in the limit of lossless metasurfaces and for
k‖ > k, which ensures absence of absorption and radiation.
While in this paper we assume a two-dimensional periodic
array of the antennas, the results can be generalized to the case
of an individual antenna. In that case, the sum over the discrete
set of plane waves

∑
n in the above expressions, should be

replaced by an integral over the continuum
∫∫

dkxdky .47

III. COLLECTIVE RESPONSE OF SINGLE-ANTENNA
METASURFACES

While Eqs. (10)–(12) fully characterize the optical prop-
erties of the system, they have to be solved numerically.
However, in the case when the wavelength of the incident
light matches the resonant wavelength of a particular current
eigenmode |jmα 〉, truncation of the current modes’ basis can
provide simple and instructive expressions.48 Indeed, it has
been shown for the case of perforated metal films that near
the cutoff frequency of a particular waveguide mode such a
“minimal” model can provide a very good approximation.41,49

As will be shown later this situation holds for the antenna ge-
ometries in the frequency range studied here. It is worthwhile
mentioning here, however, that as dimensions of antennas
decrease and they become increasingly subwavelength, the
convergence of the MMT deteriorates and more and more
current modes should be considered.

By limiting the current basis to one mode per antenna |jm1 〉 =√
2
ay

cos(πy

ay
) ŷ we assume a dominant role for the fundamental

(electric dipolar) antenna mode. Such a truncation allows us
to get simple analytical expressions for the transmission and
reflection amplitudes which qualitatively explain the system’s
response yet quantitatively match the numerical results.

First we consider a structure with a single antenna per
unit cell with a large length-to-width aspect ratio so that the
fundamental current mode |j〉 ≡ |j1

1〉 with the current along the
long antenna dimension dominates. In this case Eq. (12) can
be analytically solved for the current amplitude:

c(k‖,ω) ≡ c1
1(k‖,ω) = χ1(k‖,ω) Eext

σ−1(ω) + S11(k‖,ω)
, (15)
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where χ1(k‖,ω) = 2Y I
0,τ /(Y I

0,τ + Y II
0,τ )〈j|0,τ 〉 is the coupling

efficiency of the antenna to the external field, the sum
S11(k‖,ω) ≡ S11

11 (k‖,ω) as defined in Eq. (13a), Eext = i0,τ ,
and the rest of the in,τ ’s are assumed to be zero. In Secs. III
and IV we assume that the incident polarization is along the
long dimension of the antennas. In the minimal model, S11 is
explicitly given by

S11 = 4Z0axay

π2PxPy

∑
n

sinc2
(
axk

n
x

/
2
)(

1 + cos
(
ayk

n
y

))
(
1 − (

aykn
y

/
π

)2)2

×
[
k0

(
kn
x

/
kn
‖
)2

k
n,I
z + k

n,II
z

+
(
kn
y

/
kn
‖
)2

εIk0/k
n,I
z + εIIk0/k

n,II
z

]
, (16)

where the first term in the square bracket corresponds to the
s-polarized diffraction orders and the second term corresponds
to the p-polarized diffraction orders. sinc(t) ≡ sin(t)/t can be
approximated by unity for thin antennas (t = kxax/2 ≈ 0).
We emphasize that this sum converges much faster compared
to that in the dipole model. In the framework of the minimal
model the transmission and reflection coefficients of the single-
antenna metasurface assume a simple form:

tn,τ = 2Y I
n,τ

Y I
n,τ + Y II

n,τ

in,τ − 〈n,τ |j〉
Y I

n,τ + Y II
n,τ

c, (17)

rn,τ = Y I
n,τ − Y II

n,τ

Y I
n,τ + Y II

n,τ

in,τ − 〈n,τ |j〉
Y I

n,τ + Y II
n,τ

c. (18)

Equations (17) and (18) explicitly show two scattering
pathways: (i) the direct transmission (reflection) through the
dielectric interface between the substrate and the superstrate
without interacting with the antennas and (ii) the field radiated
by the antennas due to the excitation of the current mode.
These two scattering pathways and the presence of the
Wood’s anomaly50,51 lead to a Fano interference resulting
in an asymmetric lineshape typically observed in antenna
arrays [Fig. 2(a)] and systems with extraordinary optical
transmission. The condition of the vanishing denominator in
Eq. (15), σ−1(ω) + S11(k‖,ω) = 0, approximately describes
the eigenmodes dispersion of the antenna array [cf. Eq. (14)
for the exact expression].

Note that Eq. (15) strongly resembles that of the effective
polarizability of an array of dipoles in the dipole model.32

In our case, Im{1/σ (ω)} plays the role of “plasmonic po-
larizability” of the antennas while the role of S11(k‖,ω) is
similar to that of the dipole lattice sum. Note that because
the modal-matching technique is based on current expansion,
the polarizability and the lattice sum have π/2 phase shift
as compared to the dipole model. It can be shown that
when the dipole sum of the dipole model is written in the
reciprocal space, the sums of both models have similar terms
diverging at the Wood’s anomalies. However, in contrast to the
dipole model, the antenna model fully considers the substrate,
antenna shape, and finite conductivity. Here we limit our
consideration to the mid-IR domain where antennas can be
considered as perfectly conducting (1/σ = 0). Effect of the
finite conductivity of the antennas on Fano resonances will be
considered elsewhere.

Figure 3 compares the results obtained with the use of
the analytical minimal model, the full MMT with a sufficient

FIG. 2. (Color online) (a) Zeroth-order normal-incidence trans-
mission (solid lines) and amplitudes of the fundamental current mode
(dashed lines) for the single-antenna metasurface for the symmetric
(εI = εII, black lines) and asymmetric (εI �= εII, red lines) claddings.
(b) Zeroth-order transmission of the single-antenna metasurface at
the Wood’s anomaly as a function of the dielectric contrast εI − εII

(solid line) and the bare (without antennas) interface transmission
(dashed line). The structure parameters are as follows: ax = 0.3 μm,
ay = 1.5 μm, Px = 1.8 μm, Py = 1.8 μm, and εII = 12.

number of current modes (such that the convergence is
reached), and the full-wave COMSOL multiphysics simulations.
The minimal model shows very good agreement with both
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FIG. 3. (Color online) Direct transmission at normal incidence
calculated using three methods: (i) first-principles COMSOL simula-
tions (circles), (ii) full MMT model (solid line), and (iii) the minimal
MMT model (dashed line). Structure parameters are the same as in
Fig. 2.
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COMSOL and the full model. The inclusion of the higher-
order modes only insignificantly changes the spectra. Some
discrepancy between the full MMT and COMSOL is attributed
to the rounding of the antenna corners that was done in COMSOL

to minimize the numerical error due to spurious singularities
at sharp corners.

A. Substrate effects on Wood’s anomalies

The substrate effect appears due to the finite dielectric
contrast �ε = εI − εII between the superstrate and substrate
claddings, and in the MMT it is described by the wave
admittances (Yn,τ ) entering the expression for the sum S11

[Eq. (13a)]. Predictions of the minimal model and the exact
calculations clearly show that the presence of a substrate
strongly affects the scattering characteristics of the antenna
array (Fig. 2). This effect can be fully understood from
the analytical expressions of the minimal model. Let’s first
consider the case of a Wood’s anomaly that indicates the onset
of a diffraction order and appears in the transmission spectrum
as a maximum (for symmetric cladding, εI = εII) or as a kink
(in the general case) and represents the sharpest feature of
the spectrum. Finite optical contrast between the substrate
and the superstrate makes the sum S11 converge at the onset
of the s-polarized diffraction orders which manifests as the
suppression of the Wood’s anomalies.

Indeed, as can be seen from the expression for S11(k‖,ω),
in the case of a symmetric cladding (εI = εII) there is a
divergent term corresponding to the onset of an s-polarized
diffraction order |n,s〉; when the diffraction order experiences
a transition between the evanescent and propagating regimes
Yn,s ∼ kn

z vanishes and the lattice sum S11(k‖,ω) diverges as
1/kn

z . This gives rise to the Wood’s anomaly and vanishing of
the current mode in the antennas c(k‖,ω) → 0, as illustrated by
a black dashed curve in Fig. 2(a). Thus, at the Wood’s anomaly,
antennas are inactive and invisible (t0,τ = 1 and r0,τ = 0) as
can be seen from Eqs. (17) and (18).

In the case of an asymmetric cladding, εI �= εII, the same
term of the lattice sum that was divergent for the symmetric
case, assumes the form 1/(kn,I

z + kn,II
z ) and, since kn,I

z �= kn,II
z ,

the lattice sum S11(k‖,ω) never diverges. As shown in Fig. 2(a)
by the red dashed curve, even at the Wood’s anomaly, the
current in the wires c(k‖,ωWA), does not vanish and the antenna
array scatters the radiation.

The fact that antennas remain polarized and contribute
to scattering at the Wood’s anomaly for any finite value of
the optical contrast �ε is illustrated by Fig. 2(b), where
the transmission at the wavelength corresponding to Wood’s
anomaly of the antenna array on the substrate (solid line) is
plotted along with that of the bare (i.e., no antennas) interface
(dashed line). The two curves intersect only for the case of a
symmetric cladding and the discrepancy can be significant for
a large contrast. Thus, the peak transmission of the antenna
array on the substrate never reaches that of the bare interface.
It is also remarkable that the transmission of the antenna array
appears very asymmetric with respect to the sign of the contrast
and the difference can reach tens of percent. This asymmetry
is caused by the presence of the Wood’s anomaly of the second
medium whose diffraction order dominates in the regime of
εI > εII.

B. Substrate’s influence on collective antenna resonances

The spectral position of the collective electric dipolar
antenna resonance corresponds to the minimum of the trans-
mission or the maximum of the reflection spectra. It can also be
found from the zeros of the imaginary part of the denominator
in Eq. (15). In this paper, the length of the antennas are
such that the observed collective mode stems from the λ/2
resonance of an individual antenna (as can be seen from the
charge distribution plotted in the inset to Fig. 3). As can be
seen from dashed curves in Fig. 2(a), it also corresponds to the
maximum of the current amplitude c excited in the antennas.
Note that a good agreement between the MMT and COMSOL

spectra near the resonance in Fig. 3 indicates that our model
fully accounts for the modified polarizability of the antennas
caused by the presence of the substrate.

The presence of the substrate and suppression of the
Wood’s anomalies dramatically affect the angular dispersion
of the resonance and change its nature. Figure 4(a) shows
that for the case of a symmetric cladding we observe the
effect of “dragging” of the mode by the Wood’s anomaly,32,33

which results in its strong spatial dispersion. This strongly
dispersive character of the mode is a manifestation of its
collective origin. Indeed, the long-range interaction among
the individual metamolecules results in the appearance of
the collective modes which are spectrally displaced and

(a)

(b)

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 4. (Color online) Angular-resolved zeroth-order (direct)
transmission through the single-antenna metasurface in (a) symmetric
(εI = εII) and (b) asymmetric (εI = 1,εII = 12) cladding. The param-
eters of the structure are the same as in Figs. 2 and 3.
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sharper as compared to those observed in the individual
metamolecules.32,33 However, for the case of an asymmetric
cladding, shown in the Fig. 4(b), the dragging effect is
diminished and the resonance crosses the Wood’s anomalies,
every time reducing its quality factor due to the opening
of additional radiative channels. The resulting nondispersive
behavior and lower quality factor of the mode imply that
the resonance has lost its collective character and represent
local excitation modified by the complex electromagnetic
environment. Note that for the confined mode of the periodic
metasurfaces (i.e., nonleaky spoof plasmons), presence of the
substrate and associated suppression of the collective behavior
may result in the disappearance of the mode.36

By following the resonant frequency corresponding to the
minimum of the transmission spectrum [Fig. 5(a)] one can
also track its spectral position as a function of the dielectric
contrast �ε. Inset to Fig. 5(b) shows the corresponding spectral
shift of the resonance. The frequency of the resonance shows
nearly linear dependence on the contrast. We emphasize that
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FIG. 5. (Color online) (a) Comparison between the exact treat-
ment of the substrate and the result of the homogenized antenna’s
environment according to the effective medium theory (dashed line).
(b) Deviation of the resonance spectral position (�λ/λr ) predicted
by the effective medium approach from the exact result λr shown in
the inset.

the effect of the substrate on the antenna polarizability cannot
be rigorously described by a basic dipole model, but can be
phenomenologically incorporated into it. One of the most
common approaches to include the optical contrast is to use an
effective medium approach52 and approximate the permittivity
of the background medium by some uniform effective εeff .
For example, for layered media homogenization involves
averaging permittivities or their inverse.53,54 Note that the
choice of homogenization procedure largely depends on the
polarization of the waves. In the present work, our main interest
is in s polarization because the interaction among electric
dipoles in far field has a transverse character and therefore, in
periodic structures, the interaction is mediated by s-polarized
diffraction waves. It is this polarization that experiences
Wood’s anomalies, gives rise to collective resonances, and
perceives average permittivity εeff = (εI + εII)/2. We also
limit our consideration to the case of s-polarized incidence.
The validity of the effective medium approximation can be
tested by comparing the spectral position of the resonance cal-
culated for the antennas embedded into the effective medium
with the exact MMT result. Figure 5(b) shows the deviation of
the resonance frequency as predicted by the effective medium
theory from the exact result. One can see that the agreement
between the effective medium approach and the exact MMT
calculations is rather good. However, it can be seen from
Fig. 5(a) that the effective medium approximation fails in
predicting the transmission and reflection, especially close to
the Wood’s anomaly.

IV. FANO RESONANCE IN DOUBLE-ANTENNA
METASURFACES

Next, the MMT for the double-antenna metasurface (DAM)
shown in Fig. 1(b) is considered. In this case, the truncation of
the basis to the fundamental modes in both antennas, results
in a minimal model with a 2 × 2 matrix equation for the
amplitudes c1 and c2:[

S11 S12

S21 S11

][
c1

c2

]
= χEext

[
e−ikxDx/2

e+ikxDx/2

]
, (19)

where Smm′ ≡ Smm′
11 represents the effective Green’s func-

tion given by Eq. (13a), and χ = 2Y I
0,τ /(Y I

0,τ + Y II
0,τ )

exp(ikxDx/2)〈j(1)|0,τ 〉 is the coupling strength of the incident
light (|0,τ 〉) to the fundamental current modes.

Using the unitary transformation,

csub = c1 exp(ikxDx/2) − c2 exp(−ikxDx/2),
(20)

csup = c1 exp(ikxDx/2) + c2 exp(−ikxDx/2),

the basis of the two fundamental electric currents can be
changed to the more instructive basis of the subradiant and
superradiant current modes. In the new basis, the system is
described by the matrix equation,[

S11 + � iκ

−iκ S11 − �

][
csup

csub

]
= χEext

[
2

0

]
, (21)

where � = −1/2[S12 exp(ikxDx) + S21 exp(−ikxDx)] and
κ = i/2[S12 exp(ikxDx) − S21 exp(−ikxDx)]. These modes
are the result of the radiative coupling of the electric dipole
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FIG. 6. (Color online) Comparison of the zeroth-order trans-
mission spectra of a double-antenna metasurface on the substrate
for 50◦ angle of s-polarized incidence calculated with the use of
COMSOL multiphysics, and the minimal and full MMT models. The
structure parameters are as follows: ax = 0.3 μm, ay = 1.5 μm,
Px = Py = 1.8 μm, Dx = 0.6 μm, εI = 1, and εII = 12.

moments of the antenna pairs.3,7,33 The superradiant and
subradiant modes have distinct symmetric and antisymmetric
charge distributions, while the currents corresponding to them
are collinear and anticollinear, respectively, as illustrated
by the inset to Fig. 6. The modes interaction makes them
blue-shifted (superradiant) and red-shifted (subradiant) with
respect to the electric-dipolar resonance of SAM. Another
consequence of such hybridization and different symmetry
of the modes is their different radiative coupling efficiency.
The subradiant mode is not directly coupled to the incident
light. The latter fact is reflected in the mode’s name and
directly follows from the zero radiative coupling strength on
the right-hand side of Eq. (21).

With the use of Eqs. (10) and (11) we obtain a set of
minimal-model expressions for the transmission and reflection
coefficients:

tn,τ = 2Y I
n,τ

Y I
n,τ + Y II

n,τ

in,τ − 〈n,τ |j(1)〉 exp (−ikxDx/2)

Y I
n,τ + Y II

n,τ

csup,

(22)

rn,τ = Y I
n,τ − Y II

n,τ

Y I
n,τ + Y II

n,τ

in,τ − 〈n,τ |j(1)〉 exp (−ikxDx/2)

Y I
n,τ + Y II

n,τ

csup.

(23)

Note that because of their coupling, csup and csub are not
the true eigenmodes of the system. The true eigenmodes which
will be referred to as electric dipolar d and electric quadrupolar
q, named according to their dominant multipolar moment, can
be obtained using the transformation:33

d = � + X

2X
csup + iκ

2X
csub,

(24)

q = iκ

2X
csup + � + X

2X
csub,

where X = √
�2 + κ2. The modal coefficients d and q are

related to the incident field through

d = 1 + �/X

Sd

χEext, Sd = S11 + X,

(25)

q = iκ/X

Sq

χEext, Sq = S11 − X.

Henceforth the prefix “electric” will be omitted for these
modes. In the particular case of normal incidence, the
quadrupolar mode q exactly coincides with the subradiant
mode csub since its coupling to the superradiant mode csup

vanishes (κ → 0 as k‖ → 0). However, at finite angles of
incidence, this mode acquires a finite electric-dipole moment
and its radiative coupling and bandwidth gradually increase.
The dipolar mode, in contrast, is always strongly radiatively
coupled and is spectrally broad at any incidence angle.
Equations (22) and (23) describe a Fano resonance of a
single “continuum” interacting with two “discrete” dipolar
(d) and quadrupolar (q) resonances. However, the bandwidth
of the last two is very different due to their different radiative
coupling.

The transmission spectrum of DAM for an oblique inci-
dence of 50◦ calculated using the minimal model, full MMT,
and COMSOL solver are plotted alongside in Fig. 6. As before,
the different techniques show very good agreement, which
implies the applicability of the analytical minimal model
even for the description of light scattering by more complex
metasurfaces such as DAM. Two resonances, a broad one due
to the excitation of the dipolar mode and a narrow one due
to the excitation of the quadrupolar mode, are clearly seen in
the spectra. As expected, the narrow resonance has a strongly
asymmetric shape typical for Fano resonances.

A. Dipolar mode

Because the dipolar and quadrupolar resonances are spec-
trally separated and the quadrupolar resonance is spectrally
narrow, first we can consider the dipolar resonance individ-
ually. It has been recently shown that the collective dipolar
resonance in DAM appears to have spatial dispersion [ω(k‖)]
very different from that found in SAM.33 Using the basic
dipole model, this difference was shown to be due to the
suppression of the long-range interactions in DAMs. MMT
provides analogous results. In the present case, however,
the role of the substrate and the antenna geometry are fully
taken into account. In DAM, the Wood’s anomalies would
have corresponded to the divergences (or local maxima for
an asymmetric cladding) of the effective Green’s function
Sd = S11 + X playing the role of the lattice sum in the dipole
model or the Green’s function S11 of SAM. However, it can be
shown that exactly at the frequency where the Wood’s anomaly
is expected, the diverging terms in S11 and X exactly cancel out
eliminating the divergence, thereby suppressing the spectral
features associated with the Wood’s anomaly.33 Thus, in the
DAM case, Wood’s anomaly appears to be suppressed even for
a symmetric cladding (�ε = 0). Therefore for the asymmetric
cladding, the Wood’s anomaly is suppressed by two mecha-
nisms: one due to substrate/superstrate contrast just as in the
case of SAM, and another one due to disconnected topology of
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DAM. Note, however, that despite such suppression, one might
still observe some variations of reflectivity in the vicinity of the
expected Wood’s anomalies, which is a result of the opening
of the diffraction channel and change of the mode’s radiative
lifetime.33

B. Quadrupolar mode

Now we focus on the quadrupolar resonance. The narrow
spectral region where the transmission undergoes a rapid
variation is especially interesting because of the strong
field enhancement and slow light regime reported earlier.3,4

The asymmetric shape of the spectrum is the result of the
Fano interference between the quadrupolar resonance and
a background provided by two transmission channels: (i)
the direct transmission without interaction with the array,
and (ii) the radiation scattered by the dipolar resonance.
This background is nearly constant and is featureless over
the spectral width of the quadrupolar resonance where the
transmission changes from its maximal value to zero. It can be
analytically shown that the transmission peak corresponds to
the divergence of csub and zero of csup [Fig. 7(b)]. Because only
the super-radiant mode (csup) is coupled to the radiation, the
antennas do not radiate at this frequency and the transmission
acquires a universal value of the transmission of the bare
interface between the substrate and the superstrate as seen
from Eqs. (22) and (23). Note that this behavior is different
from that found for another type of Fano resonances, Wood’s
anomalies in SAM, when for an asymmetric cladding con-
figuration, the radiative current mode always had some finite
amplitude.

In the previous section, it was demonstrated that the
effective medium approach accurately predicted the spectral
position of the dipolar resonance for SAM. Here we test
this approach for both cases of the dipolar and quadrupolar
resonances in DAM. At first, the inset to Fig. 8 shows
the spectral position of the resonances calculated by the
full MMT approach as a function of the dielectric contrast,
and Fig. 8 shows the deviation from the exact result. The
effective medium theory matches well with the exact MMT
results for both quadrupolar and dipolar resonances. However,
just as in the case of SAM, the homogenization approach
does not succeed in predicting the transmission/reflection
spectra.

Finally, we observe that in contrast to the dipolar mode, the
quadrupolar mode in DAM is strongly affected by the Wood’s
anomaly. From the expression for its amplitude Eq. (25) one
can see that for the quadrupolar mode the divergence in the
Green’s function S11 − X does take place in the case of a
symmetric cladding εI = εII. The effect of the Wood’s anomaly
on the quadrupolar resonance of the DAM is expected to be
especially significant for large angles of incidence, when they
approach each other. This results in a strong spatial dispersion
of the quadrupolar mode observed earlier both in mid- and
near-IR plasmonic DAMs.33 For the case of an asymmetric
cladding the effect of the Wood’s anomaly on the quadrupolar
resonance is again suppressed due to the mismatch of the
wave admittances in the substrate and the superstrate and all
the arguments about the suppression of the Wood’s anomalies
used in the previous section for SAM are applicable here.
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FIG. 7. (Color online) (a) Zeroth-order s-polarized transmission
spectra of the double-antenna metasurface for the symmetric (εI =
εII = 12, blue line) and asymmetric (εI = 1, εII = 12, red line)
claddings. (b) Amplitude of the subradiant (dashed lines) and
superradiant (solid lines) current modes. The parameters of the
structure and the incidence angle are the same as in Fig. 6.

V. ELECTROMAGNETICALLY INDUCED
TRANSPARENCY

In this section the effect of substrate on EIT is studied. It is
worth mentioning that EIT-like electromagnetic response can
be found in early studies on frequency-selective surfaces.55

Acoustic counterpart of EIT has also been reported recently.56

Here we consider a periodic dolmen structure with three
antennas in its unit cell3,6,7,9,57 [shown in Fig. 1(c)] is
studied. This design was first introduced to mimic EIT in
plasmonic structures for normally incident x-polarized light.6

Two vertical antennas on the dolmen structure are responsible
for formation of the quadrupolar mode analogous to that
described in the previous section. This mode plays the role of
the subradiant mode of EIT. The horizontal antenna provides
a spectrally broad electric dipolar resonance. Its length is
chosen in such a way that the central frequency of the dipolar
resonance is matched to the frequency of the subradiant
(quadrupolar) mode. The position of the horizontal antenna
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FIG. 8. (Color online) Deviation of the spectral position (�λ/λr )
of the dipolar (red lines with circle markers) and quadrupolar (blue
lines with triangle markers) resonances predicted by the effective
medium approach from the exact results λr shown in the inset.

within the unit cell defines the degree of symmetry breaking
of the metamolecule and the intensity of coupling between
the two modes. The subradiant mode is completely decoupled
from x-polarized incident radiation if the antenna is placed
equidistantly between the two nearest vertical double antennas,
Dy = 0. However, as soon as the horizontal antenna is
displaced vertically from this position (Dy �= 0), the subradiant
mode couples to the incident radiation indirectly through the
dipolar mode of the horizontal antenna. This coupling to the
subradiant mode results in a transmission/reflection spectrum
typical for the EIT: a sharp transmission resonance embedded
into a region of highly reflecting background provided by the
dipolar antenna mode. Note that for the polarization under
study the dipolar mode of two-vertical antennas is not excited
since there is no y component of the incident electric field.
In principle, this mode could be excited indirectly provided
that the symmetry of the metamolecule is reduced further by
displacing the horizontal antenna in the x direction.3 However,
this situation will not be considered here.

Within the minimal model, limiting the current basis to only
fundamental current mode for each antenna and neglecting
finite conductivity of the metallic antennas (1/σ = 0), the EIT
structure can be described by a 3 × 3 matrix equation relating
the current amplitudes to the incident electric field:⎡

⎢⎣
S11 S12 S13

S12 S11 −S13

S13 −S13 S33

⎤
⎥⎦

⎡
⎢⎣

c1

c2

c3

⎤
⎥⎦ = χEext

⎡
⎢⎣

0

0

1

⎤
⎥⎦, (26)

where Smm′ ≡ Smm′
11 represents the effective Green’s function

given by Eq. (13a), and χ = 〈j3|0〉2Y I
0,τ /(Y I

0,τ + Y II
0,τ ) is the

coupling strength between the incident light and the horizontal
antenna (labeled as “3”). The right-hand side of Eq. (26)
reflects the fact that the vertical antennas are not coupled to
the x-polarized incident light. On the other hand, the presence
of off-diagonal matrix elements in the left-hand side of this
equation indicates that they are coupled to the horizontal

antenna. It follows from the symmetry of the structure that
the basis of three currents is redundant for the case of
x-polarized normal incidence, under which the dipolar mode
of the antenna pair Dy cannot be excited. By performing
the unitary transformation Dy = c1 + c2, Q = c1 − c2, and
Dx = c3, the noninteracting Dy mode can be eliminated. The
truncated governing equation for the superradiant mode Dx

and the subradiant mode Q assumes the form:[
SQ κ

κ SDx

][
Q

Dx

]
= χEext

[
0

1

]
, (27)

where SQ = 1/2(S11 − S12), SDx
= S33, and the coupling

between the modes is given by κ = S13. Note, that unless
the horizontal antenna is placed symmetrically (in which case
κ = 0), the modes Dx and Q are not eigenmodes of the EIT
structure, since they are coupled to each other through the
off-diagonal matrix elements in the left-hand side of Eq. (27).
This coupling gives rise to hybridization of the subradiant
mode Q and the superradiant mode Dx and formation of
new mixed states—quasidipolar D̃x and quasiquadrupolar Q̃.
Both of these modes are coupled to the incident electro-
magnetic field, but have very disparate coupling efficiency.
The true eigenmodes of the structure can be found through
an eigen-decomposition procedure, D̃x = 1/(1 + η2) Dx +
η/(1 + η2) Q and Q̃ = 1/(1 + η2) Q − η/(1 + η2) Dx where
η = (SQ − SDx

− �)/2κ (that tends to zero in the case of a
vanishing coupling κ → 0) and � = √

(SQ − SDx
)2 + 4κ2.

Then the equations for the eigenmodes’ amplitudes assume
the form,

D̃x = 2/(1 + η2)

SQ + SDx
− �

χEext, (28)

Q̃ = −2η/(1 + η2)

SQ + SDx
+ �

χEext, (29)

and the reflection/transmission coefficients of the structure can
be found from the following equations:

rn,τ = Y I
n,τ − Y II

n,τ

Y I
n,τ + Y II

n,τ

+ 〈n,τ |j3〉
Y I

n,τ + Y II
n,τ

Dx, (30)

tn,τ = 2Y I
n,τ

Y I
n,τ + Y II

n,τ

+ 〈n,τ |j3〉
Y I

n,τ + Y II
n,τ

Dx, (31)

Dx = D̃x − η Q̃. (32)

The transmission spectra of the structure are shown in
Fig. 9. The different curves demonstrate how the radiative
coupling of the subradiant mode increases when the symmetry
of the metamolecule is gradually reduced by increasing the
parameter Dy . This manifests, at first, as an appearance of
the sharp and narrow EIT transmission peak and a gradual
increase of the EIT peak bandwidth. It is remarkable that
regardless of the symmetry-breaking degree, the maximum
of the EIT peak always tends to the same value defined by
the transmission of the bare dielectric interface between the
substrate and superstrate. Therefore we can claim that this is a
rather general rule for all Fano-resonant systems, where a Fano
resonance originates from the structure of the metamolecule
and not from Wood’s anomaly as in the case of SAM.
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FIG. 9. (Color online) Substrate effect on the normal-incidence
zeroth-order transmission spectra of the dolmen metasurface for
different values of symmetry-breaking parameter Dy . Horizontal
antenna’s dimensions are ax = 1.79 μm, ay = 0.6 μm. Vertical an-
tennas are identical with ax = 0.6 μm and ay = 1.7 μm and separated
by Dx = 1.2 μm. εI = 1, εII = 12, and Px = Py = 4 μm.

VI. CONCLUSIONS

We investigated the effects of a substrate on three dif-
ferent mid-IR Fano metasurfaces and found that a finite
refraction-index contrast between the top and bottom claddings
dramatically changes the optical response of the structures.
In addition to the expected spectral shift of the resonances
induced by the substrate, a dramatic change in the collective
behavior of the systems was found. The widely used effective
medium technique was tested. While satisfactorily predicting
the spectral positions of the resonances, it fails to describe
other scattering characteristics of the structures. The Wood’s
anomalies and modes’ dispersion were found to be strongly
affected by the presence of a substrate. Divergences corre-

sponding to the onset of the s-polarized diffraction orders
disappear whenever the refractive indices of the substrate and
the superstrate are mismatched, resulting in the suppression
of the spectral features associated with the Wood’s anomalies
and giving rise to anomalously flat dispersion of the modes.
As the Wood’s anomaly and the surface resonances of the
periodic metasurfaces can be considered as a Fano resonance
due to the collective interaction of metamolecules, it can be
concluded that the presence of a substrate destroys the Fano
picture. As a consequence, the dramatic effect of the onset of
the diffraction orders reduces to the less dramatic change of the
modes radiative lifetime. The nature of the modes also changes
as they lose their collective character and start resembling local
resonances yet modified by their complex environment.

In addition to this collective Fano resonance, we also stud-
ied the effect of the substrate on Fano resonances originating
from the local geometry of the metamolecules. Two types
of Fano systems were considered with a sharp quadrupolar
resonance detuned from (double-antenna metasurface) and
tuned to (dolmen metasurface) the dipolar resonance providing
the Fano background. In both systems the Fano resonances
survived after the introduction of the substrate but were
affected due to the modification of the frequencies of both
low-Q (dipolar) and high-Q (quadrupolar) resonances as
well as additional reflection from the substrate. A universal
behavior was discovered for both systems: (a) The peak
transmission reached the value corresponding to the bare
interface, and (b) antennas became effectively invisible at
the frequency of the Fano resonance. These findings will be
useful for designing nondispersive photonic devices with a
wide-angle optical response.
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