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Abstract—A slow-group-velocity- and low-group-velocity-
dispersion photonic crystal slab waveguide is designed by using
capsule-shaped air holes in hexagonal lattice. The theoretical study
shows that adjusting the aspect ratio of holes in the innermost rows
can fine-tune the dispersion tail. The presented design can achieve
nearly flat-band photonic crystal waveguides with group index of
21–36 over the normalized bandwidth (∆ω/ω) of 1.38%–0.4%.
We also discuss the effects of the change in the holes’ aspect ratio
combined with a slight size adjustment. The group index in the
range of 21–43 for normalized bandwidth of about 1.5%–0.3%
is obtained with the combination effect. The optimized designed
exhibits a nearly constant group index of 21 over 22.7 nanometer
bandwidth at λ = 1.55 µm.

Index Terms—Group velocity dispersion, photonic crystal
waveguide, slow group velocity.

I. INTRODUCTION

THE INTEREST in manipulating the speed of propagating
light has increased dramatically in recent years for applica-

tions such as optical delay lines [1], optical buffers [2], [3], and
all optical switches [4]. The possibility to compress the energy
and signal provides the opportunity for reducing the footprint
of the devices. In addition, the strong light–matter interaction
due to the small group velocity enhances the absorptions, non
linearity, and gains per unit length that benefits numerous opti-
cal devices, such as detectors, amplifiers, and lasers [5], [6]. In
recent years, the engineered slow-light photonic crystals have
drawn a great deal of attention by researchers because of the
flexibility in design and compatibility for on-chip applications.
Slow-light 3-D semiconductor photonic crystals with a com-
plete band gap are ideal candidates, however their fabrication is
challenging. Planar photonic crystal slabs fabricated on semi-
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conductor membrane, such as silicon-on-insulator (SOI) wafers,
where light is confined in-plane by the band gap of 2-D pho-
tonic crystals [7]–[9] or by 2-D negative refractive index pho-
tonic crystals [10] and vertically by total internal reflection of
index contrast are alternative solutions because of their relative
ease of fabrication. However, the narrow bandwidth due to the
highly dispersive group velocity of the photonic crystal slabs in
the slow-light regime restricts their applications [11]. Several
research groups have achieved low group velocity dispersion
(GVD) by adjusting the waveguide width [12]–[14], the size of
the first two innermost rows of holes [15], [16], the displacement
of the first two rows [17], or by chirping the property of pho-
tonic crystals [18]. In this paper, a design of photonic crystal slab
waveguide with a nearly constant group index of 21 over 22.7 nm
centered at λ = 1.55 µm is reported, which could provide
an alternative path to approach the flat-band photonic crystal
waveguides.

II. DESIGN OF PHOTONIC CRYSTAL SLAB WAVEGUIDE

An air-bridged silicon photonic crystal slab waveguide with a
hexagonal lattice and “capsule” shaped air holes is considered in
the calculations. As shown in Fig. 1(a), a, t, 2r + l, and 2r denote
the periodicity, the slab thickness, the total length of capsule,
and the width of the capsule, respectively. The refractive index
of the slab n is 3.46 at λ = 1.55 µm and t is 0.6a. The slab is
laid on the x–z plane and a line waveguide is formed by remov-
ing a single row of holes along x-direction in real space that
is corresponding to the ΓK-direction of the reciprocal lattice.
Due to the introduction of the line defect, the Brillouin Zone
edge is shifted from K to K′ instead [19]. The band structure of
the photonic crystal, as illustrated in Fig. 1(b), is calculated us-
ing BandSOLVETM of the Rsoft Photonics CAD Design Suite
based on 3-D plane-wave-expansion (PWE) method and pro-
jected from the ΓM-direction onto the ΓK′-direction, which
gives the boundary of the first Brillouin zone. The defect modes
inside the band gap are studied by replacing a 1 × 1 unit cell
with a supercell that is 1 unit in the x-direction and 6 units in
the z-direction in the PWE calculation, as shown in the inset of
Fig. 1(b). The figure also shows a lateral even-guided mode and
a lateral odd-guided mode, and both of them are vertical even
modes. The vertical even mode is defined as the mode symmet-
ric with respect to the x–z plane. The lateral even-guided mode
is defined as the mode symmetric with respect to the x–y plane,
which is a fundamental mode, while the lateral odd-guided mode
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Fig. 1. (a) Geometry of the capsule-shaped hole photonic crystal waveguide
with hexagonal lattice. Two half circles with diameter of 2r at both terminals and
a rectangle with a width of 2r and length of l in the middle assemble the capsule.
(b) Typical band diagram of the capsule-shaped photonic crystal. The red dot
line indicates the index-guided regime and blue dot curve shows the gap-guided
regime. The inset illustrates the 1 × 6 supercell in plane, which has six periods
in the vertical direction to ensure that the defect is sufficiently isolated.

is a higher order mode. The group velocity of a guided mode
is calculated from its definition as the derivative of the angular
frequency over the wavevector

υg ≡ ∂ω

∂k
. (1)

The derivative of the reciprocal group velocity over the fre-
quency gives the GVD

GVD =
∂(1/υg )

∂λ
. (2)

In photonic crystal slab waveguide modes, there coexist gap-
guided modes and index-guided modes. A high GVD happens
at the anticrossing point, where gap-guided modes and index-
guided modes couple with each other [11]. One can tailor the
dispersion curve and shift the anticrossing point by engineering
the parameters of the line defect. Frandsen et al. have proposed
an approach to “flatten” the dispersion curve by perturbing the
size of the periodic holes of the two innermost rows close to
the defect [15]. An alternative new approach that this paper
presents, aims to control the shift of gap-guided mode, thus
flattening the dispersion curve by manipulating the aspect ratio
of the capsule-shaped air holes.

Fig. 2. (a) Waveguide mode dispersion with various aspect ratios that are
larger than one, with fixed area ratio R equal to one. The guiding modes move
toward higher frequency as the aspect ratio is increased. (b) Corresponding
group velocities of the guided modes. The gray bar marked the regime that
the group velocity fluctuation is within ±10%. (c) Corresponding GVD of
the guided modes indicate that in the flat-band regime the GVD fluctuation is
smaller than ±0.07 ns/(nm·cm) for the case of A = 2.3, and is smaller than
±0.05 ns/(nm·cm) for the rest cases.

The aspect ratio of the capsule-shaped holes is defined as

A =




2r′ + l′

2r′
, A > 1

2r′

2r′ + l′
, A < 1

(3)

where r is the radius of curvature at the two terminals of the
capsule, and l is the length of the straight portion of the cap-
sule as shown in Fig. 1(a). r′ especially denotes that of the
innermost rows, and so does l′. The dispersion relations of the
calculated fundamental modes with various values of A are
illustrated, respectively, in Fig. 2(a) and Fig. 3(a) under two
different conditions. Corresponding schematic structures of the
photonic crystal waveguide with aspect ratio of the holes bigger
than 1 and smaller than 1 are shown in the insets of Fig. 2(a)
and Fig. 3(a) accordingly. Aspect ratios of outside holes except
for the innermost rows are fixed during the calculation, where
the radius r is 0.162a, the length l is 0.35a, which corresponds
to an aspect ratio of 2.08, and area of the hole of 0.196a2 . The
area ratio, which is defined as R, denotes the relative area ratio
of innermost holes over outside holes

R =
πr′2 + 2r′l′

πr2 + 2rl
. (4)

In the calculations of Figs. 2 and 3, R is kept as 1, which
indicates that all the capsule holes have the same size irre-
spective of their locations in the waveguide. Under this con-
dition, the designed photonic crystal waveguide can provide a
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Fig. 3. (a) Waveguide mode dispersion with various aspect ratios that are
smaller than one, with fixed area ratio R equal to one. The guided modes move
toward higher frequency as the aspect ratio is decreased. (b) Corresponding
group velocities of the guided modes. The gray bar marked the regime that
the group velocity fluctuation is within ±10%. (c) Corresponding GVD of the
guiding modes that indicate that in the flat-band regime the GVD fluctuation is
smaller than ±0.1 ns/(nm·cm).

sufficient bandgap width for operation wavelength at 1.55 µm
with corresponding periodicity within 400–450 nm.

III. RESULTS AND DISCUSSIONS

To observe the effect of tuning the aspect ratio of holes at
the innermost rows on the dispersion relation, group velocity
as well as the GVD, aspect ratios of the innermost holes are
changed with a fixed area equal to the outside holes. Aspect
ratios of 1.4, 1.6, 1.9, 2.1, and 2.3 are chosen as an example.
The trend is clear as A increases, both the index-guided mode
and gap-guided mode move toward higher frequency, but with
the tendency that the gap-guided modes moving faster than
the index-guided mode, a sharper GVD happens at a lower
wavevector when A increases. Fig. 2(b) and (c) shows two sets
of comparison of group velocity and GVD, respectively, at the
aforementioned aspect ratios. The GVD tends to vanish as A
decreases, but increase after A = 1.6.

An aspect ratio smaller than 1 is realized by rotating the holes
of the innermost rows close to the line defect 90◦ around the
center of the hole, which is shown as the inset of Fig. 3(a), and
A is defined as in (3). When A < 1, the trend of dispersion
relation is opposite. It is when A decreases, that the gap-guided
regime will move toward a higher frequency and form a sharp
dispersion. Corresponding dispersion relation, group velocity
and GVD with aspect ratios of 0.6, 0.7, 0.8, and 0.9 are shown
in Fig. 3(b) and (c) to illustrate such phenomenon. These aspect
ratios are reciprocals of 1.67, 1.43, 1.25, and 1.11. For instance,
if A changes from 0.6 to 0.7, it can be considered to change an
amount of 16.67%, which is similar to the degree of change when

Fig. 4. Systematic calculation of product ng (∆ω/ω) as a function of area
ratio R and aspect ratio A. The color bar indicates the product that is calculated
to be within 0.03 to 0.3, when R is in the range of 0.92 to 1.08 and A is from
0.6 to 2.0.

A changes from 1.6 to 1.9 in A > 1 case. However, with the
same amount of change in aspect ratio, when A < 1 , Fig. 3(a)
shows that gap-guided regime moves much faster than under the
A > 1 case, which indicates that with a small aspect ratio (<1)
of the innermost holes, the gap-guided modes are more sensitive
to the change of the aspect ratio. Furthermore, one can observe
that in the case of A > 1 , the designed structure can control the
GVD within 0.05 ns/(nm·cm) with properly chosen aspect ratio
with group index around 30.

The effect of the manipulation of aspect ratio as well as the
size of the innermost holes is also studied to show the influence
of holes’ size in combination with A on pursuing a nearly con-
stant group index and to further investigate the tolerance of the
design. Fig. 4 illustrates the systematic calculation of the prod-
uct of group index (ng ) and normalized bandwidth (∆ω/ω) [16]
covering a range of A from 0.6 to 2.0 and R from 0.92 to 1.08.
The bandwidth ∆ω is defined as the frequency range that is cor-
responding to the change of group index within ±10%, where
the group index is considered constant [17]. The relative area
ratio R is slightly tailored to represent a possible deviation of
the area ratio caused by fabrication process. Fig. 4 indicates
that a flat-band slow-light region can be traced at the maroon
area where the product ng (∆ω/ω) [15] reaches its highest value
above 0.3 and the group index keeps almost constant when A
is around 1.6. The calculation shows under the condition that
A is fixed at 1.6, when the increment of R is less than 4%,
the product ng (∆ω/ω) remains almost constant, and when the
R is slightly decreased to the range of 0.92–0.94, the product
ng (∆ω/ω) slightly increases to 0.304. In other words, with
slight R change within 10%, the product of ng (∆ω/ω) remains
nearly constant at 0.3. This result reveals one of the advantages
of such design, the robustness against the change of hole sizes,
if a proper aspect ratio is chosen. This advantage can release
the stringent requirement of controlling precise hole sizes dur-
ing the fabrication process. Fig. 5 further explains the effect of
aspect ratio combined with area change to achieve a nearly con-
stant group index. When the hole area is fixed, in the flat-band
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Fig. 5. Approaching constant group index with change of the relative area
ratio R. When R is around 1.0, a nearly constant group index of 36 can be
achieved with aspect ratio of 2.0.

region, the average group index increases and the fluctuation
is reduced as aspect ratio increases; while under the same as-
pect ratio, a higher area ratio R can reduce the fluctuation. In a
previously reported method by changing positions of first two
rows of holes, the group index fluctuation in the flat-band region
increases as the group index increases [17], which indicates the
GVD increases at a higher group index. In comparison, in the
proposed design the fluctuation of group index in the flat-band
region remains almost to the same extent when the group index
increases as shown in Fig. 5. With proper choice of aspect ratio,
a vanishing GVD within ±0.05 ns/(nm·cm) is achieved which
is twice smaller than the data reported as in [13] under similar
group index. Under such circumstances, an almost optimized
flat band, which is marked correspondingly as the gray region
in Fig. 2(b) and as the black solid curve in Fig. 5, with nor-
malized bandwidth (∆ω/ω) of 1.38%, can be achieved, and the
maximum group index–bandwidth product ng (∆ω/ω) is 0.304.

IV. CONCLUSION

Slow-group-velocity photonic crystal waveguide with vanish-
ing GVD by using capsule-shaped air holes on hexagonal lattice
is proposed. Theoretical study on the effect of fine-tuning the as-
pect ratio of the innermost holes on flattening the GVD is briefly
introduced. A nearly flat-band photonic crystal waveguides with
group index of 21–36 over the normalized bandwidth (∆ω/ω) of
1.38%–0.4% can be achieved with this design. In combination
with the size tuning effect, group index in the range of 21–43 for
normalized bandwidth about 1.5%–0.3% is obtained. The opti-
mized design exhibits a nearly constant group index of 21 over
22.7 nm and 32 over 8 nm at λ = 1.55 µm, which corresponds
to a 700 ps and 1.1 nsc delay time with bandwidth of 2.8 and
1 THz for a centimeter-long device, respectively. The proposed
idea can lead to an alternative route to achieve flat band, and
the studied effect can contribute an extra degree of freedom to
the design and fabrication of slow-light photonic crystal slab
waveguides with vanishing GVD.
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