Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

Swapnajit Chakravarty ¹, Wei-Cheng Lai ², Xiaolong (Alan) Wang ¹, Che-Yun Lin ², Ray T. Chen ^{1,2}

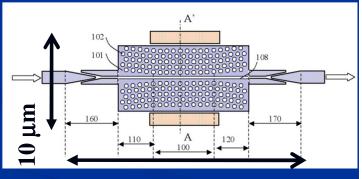
¹ Omega Optics, 10306 Sausalito Drive, Austin, TX 78759 ² Dept. of Electrical and Computer Engineering, University of Texas, Austin

> Funded by Environmental Protection Agency (EPA) SBIR Grant #: EP-D-10-047

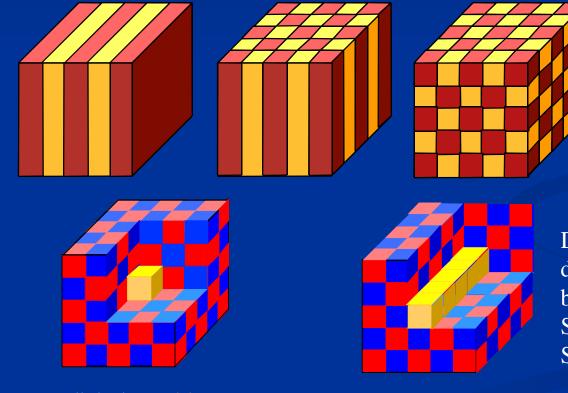
Motivation

No other chip based optical method for infrared molecular absorption spectroscopy of gases

Cavity Ringdown Spectroscopy (66lbs, ~ 3cu.ft)


FTIR Spectroscopy (24lbs, ~ 1.5cu.ft,)

Photoacoustic Spectroscopy (33lbs, ~ 1cu.ft) Tunable Diode Laser Absorption Spectroscopy

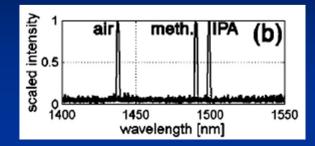

Our Device

300 μm Photonic Crystal Slot Waveguide Spectrometer (< 0.1 lbs, <10cu. cm.)

≻What is Photonic Crystal?

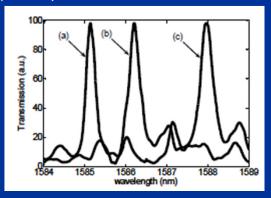
- **Periodic** electromagnetic media comparable to wavelength
- With photonic band gaps: "optical insulators"

1-D grating =1-D PhC 2-D PhC =2-D grating 3-D PhC =3-D grating Similar to: Semiconductors

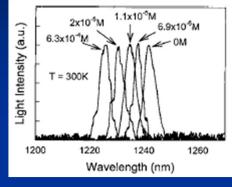

Defect structures can introduce defect mode inside the photonic bandgap Similar to: Doping of Semiconductor

can trap light in cavities

and waveguides ("wires")


Photonic Crystal Bio-Chemical Sensors

Sensing principle based on change in refractive index


Chemical Sensing

Loncar et al, Appl. Phys. Lett. **82** (26), 4648 (2003)

Bio-Sensing

Lee et al, Optics Exp. 15 (8), 4530 (2007)

Ion Sensing

Chakravarty et al, Optics Lett. **30** (19), 2578 (2005)

Frontiers in Biological Detection: From Nanosensors to Systems, Conference 7888, SPIE Photonics West 2011

Photonic Crystal Slot Waveguide Spectroscopy

Principle is based on Beer-Lambert absorption law:

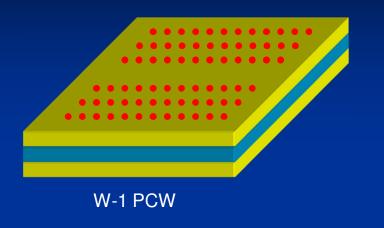
$$I = I_0 \exp[-\gamma \alpha L]$$

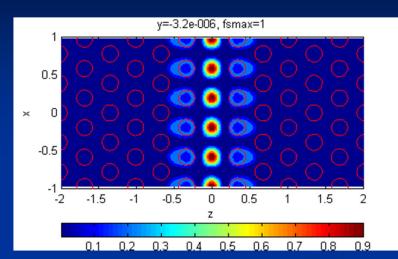
where

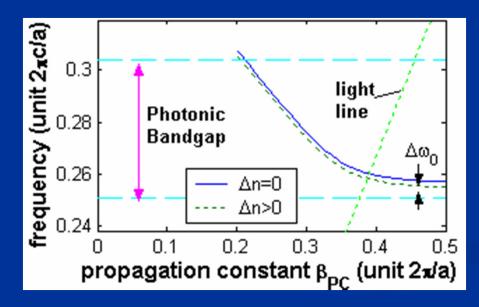
- •I =Transmitted Intensity at the output of photonic crystal slot waveguide at wavelength λ
- •I₀ = Incident Optical power at wavelength λ
- L = Geometrical optical path length = $300\mu m$
- γ = Medium-specific absorption factor determined by dispersion enhanced light-matter interaction
- α = Absorption coefficient at wavelength λ

Mortensen et al, Appl. Phys. Lett. **90** (14), 141108 (2007)

$$\gamma = f \times \frac{c/n}{v_g}$$

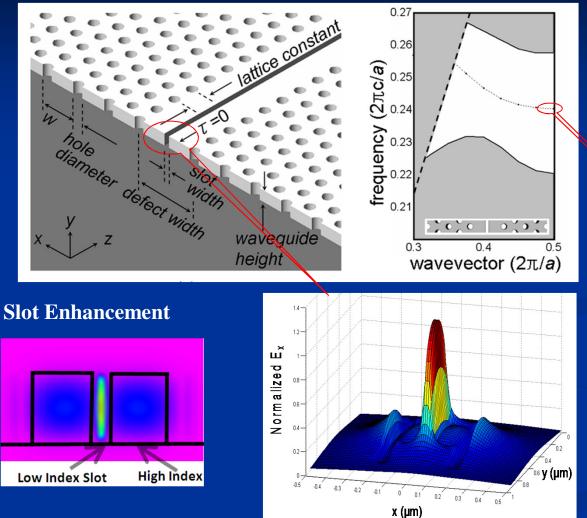

where


•c =Velocity of light in medium of refractive index n.


 $\bullet v_g = Group$ velocity of light in the photonic crystal waveguide

 $\bullet f$ = Electric field intensity enhancement in the slot

Photonic Crystal Waveguide

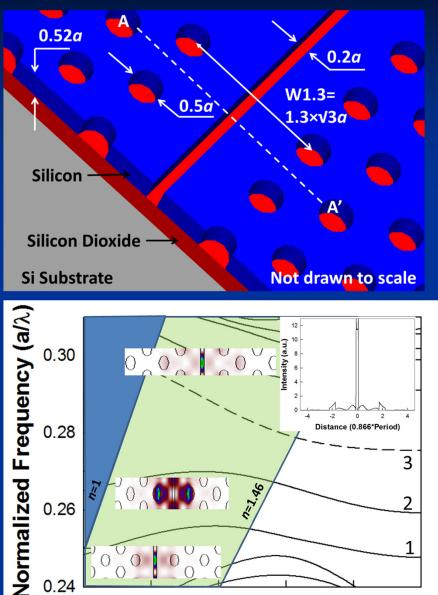


•Normalized dispersion diagram

• Scaled in wavelength by scaling the lattice constant of the photonic crystal

≻Photonic Crystal Slot Waveguide

Photonic crystal period a=460nm Waveguide height h=0.5a Hole diameter d=0.5a Slot width w₀=0.2a Defect width w₁=1.3 \sqrt{a}


Advantages:

- Slow photon group velocity
- Smaller mode profile

 Compatible fabrication processes with silicon photonics

Xu et al, Optics Lett. **29** 1626 (2004)

Photonic Crystal Slot Waveguide Design

0.35

0.40

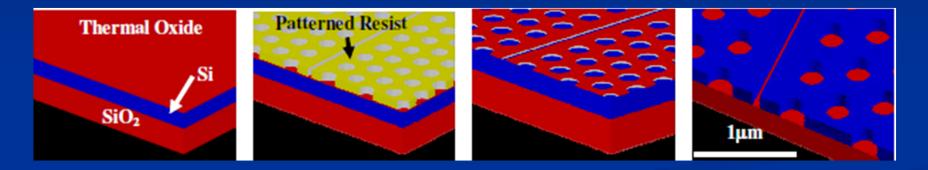
Wave Vector

0.45

0.50

0.24

0.25

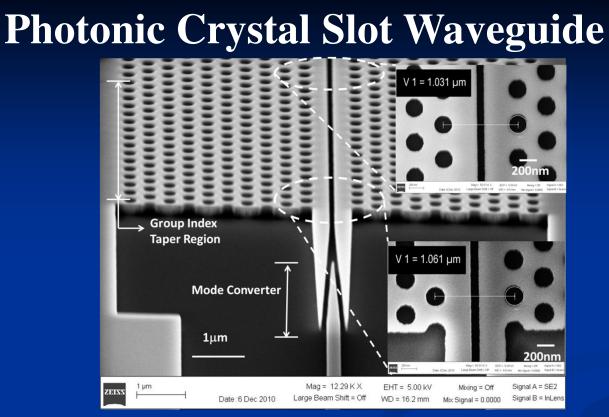

0.30

Device Parameters on a SOI wafer

- **Guided mode design in SOI wafer** •
- **Factor of 12 enhancement in slot** \bullet with mode 3.
- **Designed for wavelength at which** ٠ mode 3 has group index n_{o} =40, which coincides with the peak of the near-infrared absorption spectrum of methane at 1665.5nm.

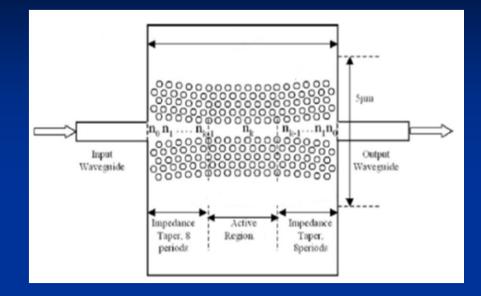
Device Fabrication Steps

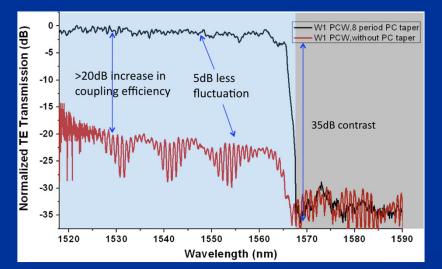
Standard silicon fabrication steps

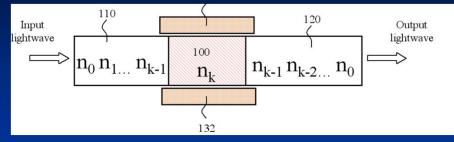


Thermal Oxide Growth **Resist Patterning**

Silicon Dioxide Hard Mask Pattern transferred to Silicon

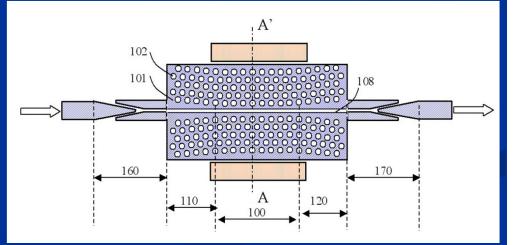

Structures considered with bottom SiO₂ cladding for mechanical stability for operation in harsh environments

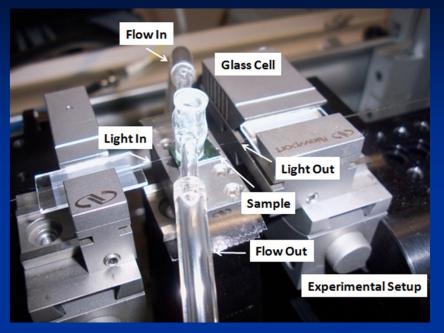

Minimum feature sizes easily achievable by 193nm photolithography

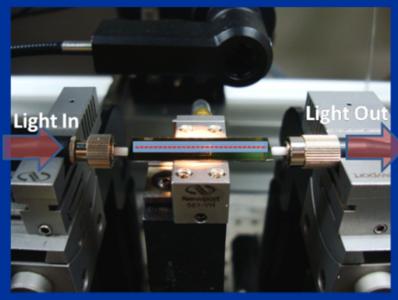


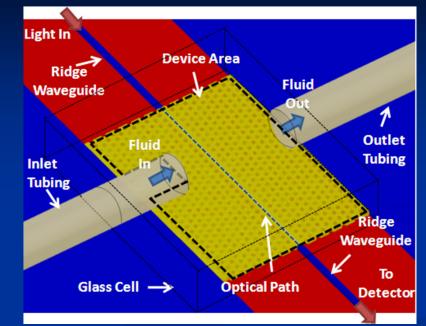
- Slot in the middle of a photonic crystal waveguide
- Mode Converter for higher coupling efficiency from the ridge waveguide into slot
- Photonic Crystal Impedance Taper for higher coupling efficiency into slow light region

Methods to improve Optical Coupling Efficiency



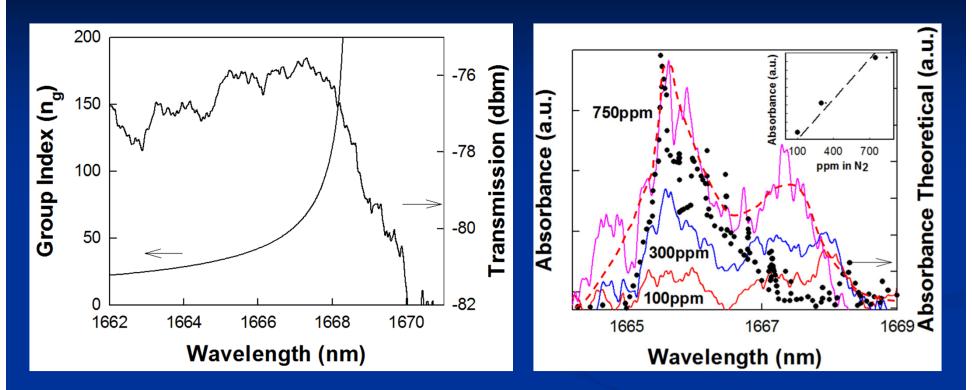

 $n_0 = 3.5 < n_1 < n_2 < \ldots < n_{k-1} < n_k = 100$


• Group index varied gradually by shifting the edge air holes; from low group index at the ridge waveguide to high group index at the photonic crystal waveguide slow light regime.



•Xiaolong Wang, Ray T. Chen, "Photonic Crystal Band-Shifting Device for Dynamic Control of Light Transmission," U.S. patent 455,791 (2009)

Experimental Setup



- Light is guided in and out of the photonic crystal waveguide by optical fibers
- Light propagates in direction perpendicular to flow of fluid
- Sample cell for controlled environment during experiments; not required for final product 12

Methane Detection in N₂ Ambient by Spectroscopy

- At 1.665µm, detection sensitivity of methane achieved for a 300µm long photonic crystal slot waveguide= 100ppm =0.03ppm-m (=0.2% PEL)
- Experimentally, $n_g \sim 30$; Slot enhancement ~ 12
- More than an order of magnitude higher sensitivity can be achieved with wavelength/frequency modulation spectroscopy in near-IR (1ppm), on chip-integrated platform

Requirements from Gas Sensors

Property	Requirement	Photonic Crystal Slot Waveguide Spectroscopy
Cost	< \$50/unit for single gas CH ₄ sensor	High volume manufacturing in on-chip CMOS platform (< \$20)
Detection Sensitivity	<1% of LEL (500ppm for CH_4)	Function of absorption cross-section (~40ppm Near-IR, ~400ppb Mid-IR)
Device Reusability / Longevity	5 years without recalibration or ~12 hours if battery-operated	No electronic components, longevity determined by silicon
Cross-Talk / False Positives/ Specificity	Minimum interference from other substances with signatures in similar wavelengths	Specificity achieved by multiple detection on-chip

• Sensitivity sufficient for most practical purposes

- More than an order of magnitude higher sensitivity can be achieved with wavelength/frequency modulation spectroscopy in near-IR (1ppm), on chip-integrated platform
- Absorbance cross-sections in mid-IR are 2 orders of magnitude larger (10ppb), on chipintegrated platform

Comparison with other Technologies

Property	CRDS *	TDLAS **	FTIR †	PAS ‡	PC Slot Waveguide
On-Chip	No	No	No	No	Yes
Size	~1 cu. ft.	~0.5 cu. ft.	~1.4 cu. ft.	~1 cu. ft.	~0.015 cu. ft
Weight	~281bs	~61bs	~241bs	~33lbs	< 0.11bs
Power	200 Watt	0.5 Watt	40 Watt	90 Watt	<0.1Watt
Portability	No	No	No	No	Yes
Sensitivity	0.002 ppm-m	1ppm-m (handheld)	0.05ppm-m	0.05ppm-m	0.012ppm-m (near-IR) #
					0.12ppb-m(mid-IR)

*CRDS: Cavity Ring-Down Spectroscopy; **TDLAS: Tunable Diode Laser Absorption Spectroscopy; †FTIR: Fourier Transform Infrared Spectroscopy; **‡**PAS: Photo-acoustic Spectroscopy; PC: Photonic Crystal

Summary

Photonic crystal Absorption spectrometers enable:

- Very low cost of ownership
- •Sensitivity sufficient for most practical purposes
- •Generous deployment of sensors in field
- Multiple species detection on-chip
- •Less chance for false positives

Small size enables minimum interference with existing processes In-situ detection and remote monitoring

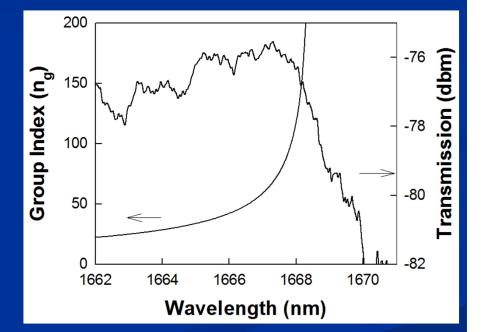
Application Areas :

- •Industrial process gas monitoring & quality control
- Air quality control & monitoring (Greenhouse and Hazardous Gases)
 Explosives detection

Discussion: Minimum Detectable Sensitivity

Smallest number density that can be determined by absorption spectroscopy

$$N_{\min} = \left(\frac{dI}{I_0}\right) / S(v)L$$


where

dI/I₀ = smallest fractional change in light intensity that can be detected = 5 × 10⁻⁴
L = effective absorption path length = 300μm ×1000= 30cm
S(v) = absorption cross section of methane at 1.665μm = 1.6 × 10⁻²⁰cm² [HITRAN]

 $N_{min} = 1.04 \times 10^{15} \text{ per cm}^3$

At 1.665µm, detection limit of methane for a 300µm long photonic crystal slot waveguide= 40ppm (=0.15% LEL)

Experimentally, $n_g \sim 30$; Slot enhancement ~ 12

Experimentally detected: 100ppm =0.03ppm-m