Photonic Crystal Slot Waveguide Optical Absorption Spectrometer for Highly sensitive Near-infrared detection of Xylene in Water

Swapnajit Chakravarty ¹, Wei-Cheng Lai ², Xiaolong (Alan) Wang ¹, Che-Yun Lin ², Ray T. Chen ^{1,2}

¹ Omega Optics, 10306 Sausalito Drive, Austin, TX 78759 ² Dept. of Electrical and Computer Engineering, University of Texas, Austin

> Funded by National Science Foundation (NSF) SBIR Grant #: IIP-0945688

Motivation

- Volatile Organic Compounds (VOCs) are undesirable pollutants in water
- Water samples are currently collected and sent to the labs, turnaround time usually few months
- Sample collection after-the-fact.
 - -Real-time detection and identification of BTEX hydrocarbons in water needed
 - -Remote Monitoring of BTEX hydrocarbons in water needed
 - -Continuous monitoring of water (drinking water, waste water) needed for prompt response
 - Most on-chip optical sensors detect changes in refractive index

-Infrared absorption is a fundamental molecular signature

FTIR, PAS, TDLAS, CRDS are not chip-integrated yet, usually larger than handheld devices.
 -An on-chip sensor that detects analytes by molecular absorption signatures

>What is Photonic Crystal?

- **Periodic** electromagnetic media comparable to wavelength
- With photonic band gaps: "optical insulators"

1-D grating =1-D PhC 2-D PhC =2-D grating 3-D PhC =3-D grating Similar to: Semiconductors

Defect structures can introduce defect mode inside the photonic bandgap Similar to: Doping of Semiconductor

can trap light in cavities

and waveguides ("wires")

On-Chip Bio-Chemical Sensors

Sensing principle based on change in refractive index

Photonic Crystal Chemical Sensing

Loncar et al, Appl. Phys. Lett. **82** (26), 4648 (2003)

Photonic Crystal Ion Sensing Chakravarty et al, Optics Lett. **30** (19), 2578 (2005)

Photonic Crystal Bio-Sensing

Lee et al, Optics Exp. **15** (8), 4530 (2007)

Robinson et al, Optics Exp. **16** (6), 4296 (2008)

Ring Resonators

Robinson et al, Optics Exp. **16** (16), 11930 (2008)

Photonic Crystal Slot Waveguide Spectroscopy

Principle is based on Beer-Lambert absorption law:

$$I = I_0 \exp[-\gamma \alpha L]$$

where

- •I =Transmitted Intensity at the output of photonic crystal slot waveguide at wavelength λ
- •I₀ = Incident Optical power at wavelength λ
- L = Geometrical optical path length = $300 \mu m$

• γ = Medium-specific absorption factor determined by dispersion enhanced light-matter interaction

• α = Absorption coefficient at wavelength λ

$$\gamma = f \times \frac{c/n}{v_g}$$

where

•c =Velocity of light in medium of refractive index n.

• v_g = Group velocity of light

•f[°] = Electric field intensity enhancement

Mortensen et al, Appl. Phys. Lett. **90** (14), 141108 (2007)

Device Fabrication Steps

Standard silicon fabrication steps

Thermal Oxide Growth

Resist Patterning

Silicon Dioxide Hard Mask Pattern transferred to Silicon

Structures considered with bottom SiO_2 cladding for mechanical stability for operation in harsh environments

Final Step: 8µm thick hydrophobic PDMS top cladding

PDMS serves 2 purposes:

- Avoids interference from near-infrared absorption of water
- Extracts VOCs from water into optical interaction volume in the photonic crystal slot

Photonic Crystal Slot Waveguide

- Slot in the middle of a photonic crystal waveguide
- Mode Converter for higher coupling efficiency from the ridge waveguide into slot
- Photonic Crystal Impedance Taper for higher coupling efficiency into slow light region

•Xiaolong Wang, Ray T. Chen, "Photonic Crystal Band-Shifting Device for Dynamic Control of Light Transmission," U.S. patent 455,791 (2009)

Experimental Setup

Xylene Detection in Water Ambient

•

[1] Albuquerque et al, Anal. Chem. 77 (1), 72 (2005) [2] Burck et al, J. Hazard. Mater. 83, 11 (2001)

- **100parts per billion (v/v) (86 µg/L) detected**
- In comparison:
 - PDMS disks showed 3mg/L [1]
 - 11 meter optical fiber showed 400µg/L [2]
- No need for salinity enhancement [3]
- **Response time < 1minute**
- <1mW power

[3] Lima et al, Sens. & Actuators B-Chem 125 (1), 229 (2007)

Summary

Photonic Crystal Slot Waveguide enables:

- On-Chip sensing by infrared absorption signatures
- VOC detection directly in water

Generous deployment of low-cost sensors in field
Multiple species detection simultaneously on-chip

Easily scalable to mid-IR for higher sensitivity

In-situ detection

- Remote Monitoring
- Continuous Monitoring

Application Areas :

Waster water monitoring, groundwater monitoring, drinking water monitoring
Process fluid monitoring

Methods to improve Optical Coupling Efficiency

 $n_0 = 3.5 < n_1 < n_2 < \ldots < n_{k-1} < n_k = 100$

• Group index varied gradually by shifting the edge air holes; from low group index at the ridge waveguide to high group index at the photonic crystal waveguide slow light regime.

•Xiaolong Wang, Ray T. Chen, "Photonic Crystal Band-Shifting Device for Dynamic Control of Light Transmission," U.S. patent 455,791 (2009)